Home
Class 14
MATHS
If x= sqrt3/2 , then the value of sqrt(1...

If `x= sqrt3/2` , then the value of `sqrt(1+x)+sqrt(1-x)` is

A

`1/sqrt3`

B

`2sqrt3`

C

`sqrt3`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{1+x} + \sqrt{1-x} \) given that \( x = \frac{\sqrt{3}}{2} \). ### Step-by-step Solution: 1. **Substitute the value of \( x \)**: \[ x = \frac{\sqrt{3}}{2} \] Therefore, we need to evaluate: \[ \sqrt{1 + \frac{\sqrt{3}}{2}} + \sqrt{1 - \frac{\sqrt{3}}{2}} \] 2. **Calculate \( 1 + \frac{\sqrt{3}}{2} \)**: \[ 1 + \frac{\sqrt{3}}{2} = \frac{2}{2} + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2} \] 3. **Calculate \( 1 - \frac{\sqrt{3}}{2} \)**: \[ 1 - \frac{\sqrt{3}}{2} = \frac{2}{2} - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2} \] 4. **Substitute back into the expression**: Now we have: \[ \sqrt{\frac{2 + \sqrt{3}}{2}} + \sqrt{\frac{2 - \sqrt{3}}{2}} \] 5. **Factor out the common term**: \[ = \sqrt{\frac{1}{2}(2 + \sqrt{3})} + \sqrt{\frac{1}{2}(2 - \sqrt{3})} \] \[ = \frac{1}{\sqrt{2}} \left( \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} \right) \] 6. **Simplify \( \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} \)**: To simplify \( \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} \), we can use the identity: \[ \sqrt{a} + \sqrt{b} = \sqrt{(a+b) + 2\sqrt{ab}} \] where \( a = 2 + \sqrt{3} \) and \( b = 2 - \sqrt{3} \). First, calculate \( a + b \): \[ (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] Next, calculate \( ab \): \[ (2 + \sqrt{3})(2 - \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Now we can substitute back: \[ \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} = \sqrt{4 + 2\sqrt{1}} = \sqrt{4 + 2} = \sqrt{6} \] 7. **Final expression**: Substitute back into our expression: \[ \frac{1}{\sqrt{2}} \cdot \sqrt{6} = \frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3} \] ### Final Answer: Thus, the value of \( \sqrt{1+x} + \sqrt{1-x} \) is \( \sqrt{3} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2A|44 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

If x=3+2sqrt(2), then the value of (sqrt(x)-(1)/(sqrt(x))) is

Knowledge Check

  • If x = 3 + 2sqrt(2) , then the value of sqrt(x)- 1/sqrt(x) is:

    A
    1
    B
    `2sqrt(2)`
    C
    2
    D
    `3sqrt(3)`
  • If x = ( sqrt(3))/(2) , then the value of ((sqrt( 1 + x) + sqrt( 1 - x))/(sqrt(1 + x)- sqrt( 1 - x))) is

    A
    `- sqrt(3)`
    B
    `-1`
    C
    1
    D
    `sqrt(3)`
  • If x = 3 + 2 sqrt(2) , then the value of ( sqrt(x) - (1)/( sqrt(x))) is

    A
    1
    B
    2
    C
    `2 sqrt(2)`
    D
    `3 sqrt(3)`
  • Similar Questions

    Explore conceptually related problems

    If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

    10. If x=2+sqrt(3) then the value of sqrt(x)+(1)/(sqrt(x))

    If x = (sqrt2)/(2) , then the value of (1 + x )/( 1 + sqrt (1 + x )) + (1-x )/( 1 - sqrt (1 - x)) is equal to

    lf x=(sqrt3)/2 , then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1-sqrt(1-x)) is?

    If x=sqrt(1+sqrt(3)/(2))-sqrt(1-sqrt(3)/(2)) , then the value of (sqrt(2)-x)/(sqrt(2)+x) will be closet to :