Home
Class 14
MATHS
Simplest form of root(4r)(x^6)+root(2r)(...

Simplest form of `root(4r)(x^6)+root(2r)(z^(-5))` is

A

`root4(z^r)`

B

`rootr(z^4)`

C

`sqrt(z^(4r))`

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{4r} \cdot x^6 + \sqrt{2r} \cdot z^{-5} \), we will follow these steps: ### Step 1: Simplify \( \sqrt{4r} \cdot x^6 \) We can break this down into two parts: - The square root of \( 4r \) - The term \( x^6 \) The square root of \( 4r \) can be simplified as: \[ \sqrt{4r} = \sqrt{4} \cdot \sqrt{r} = 2\sqrt{r} \] Now, we can rewrite \( x^6 \) as: \[ x^6 = (x^3)^2 \] Thus, we can express \( \sqrt{x^6} \) as: \[ \sqrt{x^6} = x^3 \] Combining these, we have: \[ \sqrt{4r} \cdot x^6 = 2\sqrt{r} \cdot x^3 = 2x^3\sqrt{r} \] ### Step 2: Simplify \( \sqrt{2r} \cdot z^{-5} \) Similarly, we can simplify \( \sqrt{2r} \): \[ \sqrt{2r} = \sqrt{2} \cdot \sqrt{r} \] And for \( z^{-5} \), we can express it as: \[ \sqrt{z^{-5}} = z^{-5/2} \] Thus, we can combine these: \[ \sqrt{2r} \cdot z^{-5} = \sqrt{2} \cdot \sqrt{r} \cdot z^{-5} = \sqrt{2} \cdot z^{-5/2} \cdot \sqrt{r} \] ### Step 3: Combine the two simplified expressions Now we can combine the two parts: \[ 2x^3\sqrt{r} + \sqrt{2}z^{-5/2}\sqrt{r} \] Factoring out \( \sqrt{r} \): \[ \sqrt{r}(2x^3 + \sqrt{2}z^{-5/2}) \] ### Final Answer The simplest form of the expression \( \sqrt{4r} \cdot x^6 + \sqrt{2r} \cdot z^{-5} \) is: \[ \sqrt{r}(2x^3 + \sqrt{2}z^{-5/2}) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

Express the following in the simplest form : root(4)(root(5)(1048576))

The simplest RF of root(4)(112) is

root(6)((root(2)(5^4))^6)

Express the following in the simplest form: (root(3)(81))/(root(3)(3))

Simplify and express the result in its simplest form root(3)(24)-:(root(4)(2).root(3)(3))

root(3)(4) times root(6)(5)

Find the simplest RF of : (a) root(4)(216) and (b) root(5)(16)

Simplify and express the result in its simplest form sqrt(x^(2)y^(2))-:root(3)(x^(4)y^(3))

Simplify root(5)(x^(4)root(4)(x^(3)root(3)(x^(2)sqrt(x))))

root(3)((x-4)(x-6))>2