Home
Class 12
MATHS
lim(x to oo) (int(0)^(2x) x e^(x^(2)))/e...

`lim_(x to oo) (int_(0)^(2x) x e^(x^(2)))/e^(4x^(2))` equals

A

0

B

`oo`

C

2

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{\int_{0}^{2x} x e^{x^2} \, dt}{e^{4x^2}}, \] we will first analyze the integral in the numerator. ### Step 1: Simplify the Integral The integral \[ \int_{0}^{2x} x e^{x^2} \, dt \] can be simplified because \(x e^{x^2}\) is treated as a constant with respect to \(t\). Therefore, we can factor \(x e^{x^2}\) out of the integral: \[ \int_{0}^{2x} x e^{x^2} \, dt = x e^{x^2} \int_{0}^{2x} dt = x e^{x^2} \cdot (2x - 0) = 2x^2 e^{x^2}. \] ### Step 2: Substitute Back into the Limit Now we substitute this result back into the limit: \[ \lim_{x \to \infty} \frac{2x^2 e^{x^2}}{e^{4x^2}}. \] ### Step 3: Simplify the Expression Next, we simplify the fraction: \[ \frac{2x^2 e^{x^2}}{e^{4x^2}} = 2x^2 e^{x^2 - 4x^2} = 2x^2 e^{-3x^2}. \] ### Step 4: Evaluate the Limit Now we need to evaluate the limit: \[ \lim_{x \to \infty} 2x^2 e^{-3x^2}. \] As \(x \to \infty\), the term \(e^{-3x^2}\) approaches \(0\) much faster than \(2x^2\) approaches \(\infty\). Therefore, the limit evaluates to: \[ \lim_{x \to \infty} 2x^2 e^{-3x^2} = 0. \] ### Final Answer Thus, we conclude that: \[ \lim_{x \to \infty} \frac{\int_{0}^{2x} x e^{x^2} \, dt}{e^{4x^2}} = 0. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION-PAPERS-2014

    BITSAT GUIDE|Exercise MATHEMATICS|45 Videos
  • QUESTION-PAPERS-2016

    BITSAT GUIDE|Exercise MATHEMATICS|45 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

The limit lim_(x rarr oo)x^(2)int_(0)^(x)e^(t^(3))-x^(3)dt equals

Knowledge Check

  • lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

    A
    0
    B
    2
    C
    `(1)/(2)`
    D
    `oo`
  • lim_(xrarr oo) (int_(0) ^(2x)xe^(x^(2))dx)/(e^4x^2)

    A
    0
    B
    `oo`
    C
    2
    D
    `1//2`
  • lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    A
    1
    B
    -1
    C
    2
    D
    -2
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(oo)e^(-x/2)dx

    int_(0)^(oo)e^(-x/2)dx

    int_(0)^(oo)e^(-x/2)dx

    int_(0)^(oo)e^(-x/2)dx

    int_(0)^(oo)x^(3)e^(-x^(2))dx=