Home
Class 12
MATHS
sin^(4) ""(pi)/(8)+ sin^(4) ""(3pi)/(8) ...

`sin^(4) ""(pi)/(8)+ sin^(4) ""(3pi)/(8) + sin^(4) ""(5 pi)/(8) + sin^(4) ""(7 pi)/(8)` is equal to

A

1

B

`(3)/(2)`

C

2

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^4 \left( \frac{\pi}{8} \right) + \sin^4 \left( \frac{3\pi}{8} \right) + \sin^4 \left( \frac{5\pi}{8} \right) + \sin^4 \left( \frac{7\pi}{8} \right) \), we will use some trigonometric identities and properties. ### Step-by-Step Solution: 1. **Rewrite the Sine Terms**: We can use the identity \( \sin(\pi - x) = \sin(x) \) to simplify the terms: \[ \sin\left( \frac{5\pi}{8} \right) = \sin\left( \pi - \frac{3\pi}{8} \right) = \sin\left( \frac{3\pi}{8} \right) \] \[ \sin\left( \frac{7\pi}{8} \right) = \sin\left( \pi - \frac{\pi}{8} \right) = \sin\left( \frac{\pi}{8} \right) \] Therefore, we can rewrite the expression as: \[ \sin^4 \left( \frac{\pi}{8} \right) + \sin^4 \left( \frac{3\pi}{8} \right) + \sin^4 \left( \frac{3\pi}{8} \right) + \sin^4 \left( \frac{\pi}{8} \right) \] Which simplifies to: \[ 2\sin^4 \left( \frac{\pi}{8} \right) + 2\sin^4 \left( \frac{3\pi}{8} \right) \] Thus, we can factor out the 2: \[ 2 \left( \sin^4 \left( \frac{\pi}{8} \right) + \sin^4 \left( \frac{3\pi}{8} \right) \right) \] 2. **Use the Identity for Sine Squared**: We can use the identity \( \sin^2 x + \cos^2 x = 1 \) to express \( \sin^4 x \): \[ \sin^4 x = (\sin^2 x)^2 = \left( \sin^2 x \right)^2 = \left( 1 - \cos^2 x \right)^2 \] Therefore, we can express \( \sin^4 \left( \frac{\pi}{8} \right) \) and \( \sin^4 \left( \frac{3\pi}{8} \right) \) as: \[ \sin^4 \left( \frac{\pi}{8} \right) = \left( \sin^2 \left( \frac{\pi}{8} \right) \right)^2 \] \[ \sin^4 \left( \frac{3\pi}{8} \right) = \left( \sin^2 \left( \frac{3\pi}{8} \right) \right)^2 \] 3. **Using the Double Angle Formula**: We can use the double angle formula: \[ \sin(2x) = 2\sin(x)\cos(x) \] Thus, \[ \sin^2 \left( \frac{3\pi}{8} \right) = \cos^2 \left( \frac{\pi}{8} \right) \] 4. **Combine the Terms**: Now, we can combine the squares: \[ \sin^4 \left( \frac{\pi}{8} \right) + \sin^4 \left( \frac{3\pi}{8} \right) = \sin^4 \left( \frac{\pi}{8} \right) + \cos^4 \left( \frac{\pi}{8} \right) \] Using the identity \( a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \): \[ = \left( \sin^2 \left( \frac{\pi}{8} \right) + \cos^2 \left( \frac{\pi}{8} \right) \right)^2 - 2\sin^2 \left( \frac{\pi}{8} \right) \cos^2 \left( \frac{\pi}{8} \right) \] Since \( \sin^2 \left( \frac{\pi}{8} \right) + \cos^2 \left( \frac{\pi}{8} \right) = 1 \): \[ = 1 - 2\sin^2 \left( \frac{\pi}{8} \right) \cos^2 \left( \frac{\pi}{8} \right) \] 5. **Final Calculation**: We know that \( \sin(2x) = 2\sin(x)\cos(x) \): \[ = 1 - \frac{1}{2} \sin^2 \left( \frac{\pi}{4} \right) = 1 - \frac{1}{2} \cdot \frac{1}{2} = 1 - \frac{1}{4} = \frac{3}{4} \] Therefore, multiplying by 2: \[ 2 \left( \frac{3}{4} \right) = \frac{3}{2} \] ### Final Answer: \[ \sin^4 \left( \frac{\pi}{8} \right) + \sin^4 \left( \frac{3\pi}{8} \right) + \sin^4 \left( \frac{5\pi}{8} \right) + \sin^4 \left( \frac{7\pi}{8} \right) = \frac{3}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    BITSAT GUIDE|Exercise BITSAT Archives|41 Videos
  • THREE DIMENSIONAL GEOMETRY

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |11 Videos
  • VECTOR ALGEBRA

    BITSAT GUIDE|Exercise BITSAT Archives|21 Videos

Similar Questions

Explore conceptually related problems

"sin"^(2)(pi)/(8)+"sin"^(2)(3pi)/(8) +"sin"^(2)(5pi)/(8)+"sin"^(2)(7pi)/(8)= _________

(cos^(2)pi)/(8)+(sin^(2)(3 pi))/(8)+(sin^(2)(5 pi))/(8_(sin)^(2))(7 pi)/(8)=2

Knowledge Check

  • The value of cos^(4) ""(pi)/(8) + cos^(4) ""(3pi)/(8)+cos^(4) ""(5 pi)/(8) + cos^(4) ""(7 pi)/(8) is

    A
    `(1)/(2)`
    B
    2
    C
    3
    D
    `(3)/(2)`
  • cos^(4)""(pi)/(8)+cos^(4)""(3pi)/(8)+cos^(4)""(5pi)/(8)+cos^(4)""(7pi)/(8) is equal to

    A
    `(3)/(2)`
    B
    `(-2)/(3)`
    C
    1
    D
    `-1`
  • cos^(4) "" ( pi )/(8) + cos^(4) "" ( 3pi)/( 8 ) + cos^(4) "" ( 5pi )/( 8 ) + cos^(4) ""(7pi)/( 8 ) =

    A
    `(1)/(2)`
    B
    `(2)/(2)`
    C
    `(3)/(2)`
    D
    `(4)/(2)`
  • Similar Questions

    Explore conceptually related problems

    Prove that sin^(4) pi/8+ sin^(4) 3pi/8 + sin^(4) 5pi/8 + sin^(4) 7pi/8 = 3/2 .

    sin^(2)(pi)/(4)+sin^(2)(3 pi)/(4)+sin^(2)(5 pi)/(4)+sin^(2)(7 pi)/(4)=2

    To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

    To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

    sin ""(pi)/(4) cos ""(pi)/(12) - cos ""(pi)/(4) sin ""(pi)/(12) is equal to