Home
Class 12
MATHS
The unit vector perpendicular to the vec...

The unit vector perpendicular to the vectors `hati -hatj andhati + hatj` forming a right handed system, is

A

`hatk`

B

`-hatk`

C

`(hati-hatj)/(sqrt2)`

D

`(hati+hatj)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector perpendicular to the vectors \( \hat{i} - \hat{j} \) and \( \hat{i} + \hat{j} \), we can follow these steps: ### Step 1: Define the Vectors Let: - Vector \( \mathbf{A} = \hat{i} - \hat{j} \) - Vector \( \mathbf{B} = \hat{i} + \hat{j} \) ### Step 2: Calculate the Cross Product To find a vector that is perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \), we compute the cross product \( \mathbf{A} \times \mathbf{B} \). Using the determinant form for the cross product: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} \] ### Step 3: Calculate the Determinant Calculating the determinant: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} -1 & 0 \\ 1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 0 \\ 1 & 0 \end{vmatrix} = 0 \) 2. \( \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} = 0 \) 3. \( \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-1)(1) = 1 + 1 = 2 \) Thus, we have: \[ \mathbf{A} \times \mathbf{B} = 0 \hat{i} - 0 \hat{j} + 2 \hat{k} = 2 \hat{k} \] ### Step 4: Find the Magnitude of the Cross Product Now, we find the magnitude of \( \mathbf{A} \times \mathbf{B} \): \[ |\mathbf{A} \times \mathbf{B}| = |2 \hat{k}| = 2 \] ### Step 5: Find the Unit Vector The unit vector \( \mathbf{C} \) in the direction of \( \mathbf{A} \times \mathbf{B} \) is given by: \[ \mathbf{C} = \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} = \frac{2 \hat{k}}{2} = \hat{k} \] ### Conclusion The unit vector perpendicular to the vectors \( \hat{i} - \hat{j} \) and \( \hat{i} + \hat{j} \) is: \[ \hat{k} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    BITSAT GUIDE|Exercise BITSAT Archives|21 Videos
  • TRIGONOMETRY

    BITSAT GUIDE|Exercise BITSAT Archives|41 Videos

Similar Questions

Explore conceptually related problems

The unit vector perpendicular to vectors a=3hati+hatj and =2hati-hatj-5hatk is

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Knowledge Check

  • A vector perpendicular to both the vector 2hati -3hatj and 3hati - 2hatj is

    A
    `hatj + 5hatk`
    B
    `hatj -5hatk`
    C
    `6hatk`
    D
    `hati +hatj+ hatk`
  • A unit vector perpendicular to both hati + hatj and hatj + hatk is

    A
    `hati -hatj +hatk`
    B
    ` hati +hatj + hatk`
    C
    ` ( hati +hatj +hatk)/(sqrt3)`
    D
    ` (hati -hatj +hatk)/( sqrt3)`
  • A vector perpendicular to both of the vectors hati+hatj+hatk and hati+hatj is

    A
    `hati+hatj`
    B
    `hati-hatj`
    C
    `c(hati-hatj)`,c is scalar
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

    The unit vector perpendicular to vector I -j and I + j forming a right handed system is

    A unit vector perpendicular to both the vectors 2hati-2hatj+hatk and 3hati+4hatj-5hatk , is

    A unit vector perpendicular to both hati + hatj + hatk and 2hati + hatj + 3hatk is

    A vector perpendicular to (4hati+3hatj) is -