Home
Class 12
MATHS
The value of x^((logy-logz))xx y^((logz ...

The value of `x^((logy-logz))xx y^((logz - logx)) xx z^((log x- logy))` is equal to

A

1

B

3

C

0

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( x^{(\log y - \log z)} \cdot y^{(\log z - \log x)} \cdot z^{(\log x - \log y)} \), we will follow these steps: ### Step 1: Rewrite the expression using properties of logarithms We can rewrite the logarithmic differences using the property that \( \log a - \log b = \log \left( \frac{a}{b} \right) \). So, we have: \[ x^{(\log y - \log z)} = x^{\log \left( \frac{y}{z} \right)} \] \[ y^{(\log z - \log x)} = y^{\log \left( \frac{z}{x} \right)} \] \[ z^{(\log x - \log y)} = z^{\log \left( \frac{x}{y} \right)} \] ### Step 2: Combine the expression Now, substituting these back into the original expression gives us: \[ x^{\log \left( \frac{y}{z} \right)} \cdot y^{\log \left( \frac{z}{x} \right)} \cdot z^{\log \left( \frac{x}{y} \right)} \] ### Step 3: Use the property of exponents Using the property \( a^{\log_b c} = c^{\log_b a} \), we can rewrite each term: \[ x^{\log \left( \frac{y}{z} \right)} = \left( \frac{y}{z} \right)^{\log x} \] \[ y^{\log \left( \frac{z}{x} \right)} = \left( \frac{z}{x} \right)^{\log y} \] \[ z^{\log \left( \frac{x}{y} \right)} = \left( \frac{x}{y} \right)^{\log z} \] ### Step 4: Combine all the rewritten terms Now, substituting these back, we have: \[ \left( \frac{y}{z} \right)^{\log x} \cdot \left( \frac{z}{x} \right)^{\log y} \cdot \left( \frac{x}{y} \right)^{\log z} \] ### Step 5: Simplify the expression This can be simplified as follows: \[ = \frac{y^{\log x}}{z^{\log x}} \cdot \frac{z^{\log y}}{x^{\log y}} \cdot \frac{x^{\log z}}{y^{\log z}} \] ### Step 6: Combine the fractions Combining the fractions gives: \[ = \frac{y^{\log x} \cdot z^{\log y} \cdot x^{\log z}}{z^{\log x} \cdot x^{\log y} \cdot y^{\log z}} \] ### Step 7: Notice the cancellation Now, we can see that each base appears in both the numerator and the denominator: - \( y^{\log x} \) cancels with \( y^{\log z} \) - \( z^{\log y} \) cancels with \( z^{\log x} \) - \( x^{\log z} \) cancels with \( x^{\log y} \) Thus, we are left with: \[ = 1 \] ### Conclusion The value of the expression \( x^{(\log y - \log z)} \cdot y^{(\log z - \log x)} \cdot z^{(\log x - \log y)} \) is equal to \( 1 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos
  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • MODEL SOLVED PAPER

    ARIHANT PUBLICATION JHARKHAND|Exercise SECTION-I : MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

Find the value of x^(log y - log x). Xy^(log z-log x) xx z^(log x-log y)

The value of (yz)^(log y-log z)xx(zx)^(log z-log x)xx(xy)^(log x-log y) is

Knowledge Check

  • The value of x^((log y- log z)) xx y^((log z- log x)) xx z^((log x- logy)) is equal to

    A
    1
    B
    3
    C
    0
    D
    5
  • The value of log_z(log_(3)81)

    A
    0
    B
    1
    C
    2
    D
    6
  • The value of (x^(log_10 - y - log_10 z)) xx (y^(log_10 z -log_10 x)) xx (z^(log_10 x - log_10 y)) is

    A
    0
    B
    1
    C
    e
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Prove that x^(logy-logz).y^(logz-logx).z^(logx-logy)=1

    Suppose x;y;z>0 and are not equal to 1 and log x+log y+log z=0. Find the value of x(1)/(log y)+(1)/(log z)xx y^((1)/(log z)+(1)/(log x))xx(1)/(log x)+(1)/(log y) (base 10)

    If x>0, y>0, z>0 , prove that x^(logy-logz)+y^(logz-logx)+z^(logx-logy)ge3 .

    Find the value of log_y"x"xxlog_zyxxlog_xz

    Find the value of log_(y)x log_(z)y xx log_(z)x