Home
Class 12
MATHS
The value of x^((logy-logz))xx y^((logz ...

The value of `x^((logy-logz))xx y^((logz - logx)) xx z^((log x- logy))` is equal to

A

1

B

3

C

0

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( x^{(\log y - \log z)} \cdot y^{(\log z - \log x)} \cdot z^{(\log x - \log y)} \), we will follow these steps: ### Step 1: Rewrite the expression using properties of logarithms We can rewrite the logarithmic differences using the property that \( \log a - \log b = \log \left( \frac{a}{b} \right) \). So, we have: \[ x^{(\log y - \log z)} = x^{\log \left( \frac{y}{z} \right)} \] \[ y^{(\log z - \log x)} = y^{\log \left( \frac{z}{x} \right)} \] \[ z^{(\log x - \log y)} = z^{\log \left( \frac{x}{y} \right)} \] ### Step 2: Combine the expression Now, substituting these back into the original expression gives us: \[ x^{\log \left( \frac{y}{z} \right)} \cdot y^{\log \left( \frac{z}{x} \right)} \cdot z^{\log \left( \frac{x}{y} \right)} \] ### Step 3: Use the property of exponents Using the property \( a^{\log_b c} = c^{\log_b a} \), we can rewrite each term: \[ x^{\log \left( \frac{y}{z} \right)} = \left( \frac{y}{z} \right)^{\log x} \] \[ y^{\log \left( \frac{z}{x} \right)} = \left( \frac{z}{x} \right)^{\log y} \] \[ z^{\log \left( \frac{x}{y} \right)} = \left( \frac{x}{y} \right)^{\log z} \] ### Step 4: Combine all the rewritten terms Now, substituting these back, we have: \[ \left( \frac{y}{z} \right)^{\log x} \cdot \left( \frac{z}{x} \right)^{\log y} \cdot \left( \frac{x}{y} \right)^{\log z} \] ### Step 5: Simplify the expression This can be simplified as follows: \[ = \frac{y^{\log x}}{z^{\log x}} \cdot \frac{z^{\log y}}{x^{\log y}} \cdot \frac{x^{\log z}}{y^{\log z}} \] ### Step 6: Combine the fractions Combining the fractions gives: \[ = \frac{y^{\log x} \cdot z^{\log y} \cdot x^{\log z}}{z^{\log x} \cdot x^{\log y} \cdot y^{\log z}} \] ### Step 7: Notice the cancellation Now, we can see that each base appears in both the numerator and the denominator: - \( y^{\log x} \) cancels with \( y^{\log z} \) - \( z^{\log y} \) cancels with \( z^{\log x} \) - \( x^{\log z} \) cancels with \( x^{\log y} \) Thus, we are left with: \[ = 1 \] ### Conclusion The value of the expression \( x^{(\log y - \log z)} \cdot y^{(\log z - \log x)} \cdot z^{(\log x - \log y)} \) is equal to \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos
  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • MODEL SOLVED PAPER

    ARIHANT PUBLICATION JHARKHAND|Exercise SECTION-I : MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

The value of (yz)^(log y-log z)xx(zx)^(log z-log x)xx(xy)^(log x-log y) is

Prove that x^(logy-logz).y^(logz-logx).z^(logx-logy)=1

Suppose x;y;z>0 and are not equal to 1 and log x+log y+log z=0. Find the value of x(1)/(log y)+(1)/(log z)xx y^((1)/(log z)+(1)/(log x))xx(1)/(log x)+(1)/(log y) (base 10)

If x>0, y>0, z>0 , prove that x^(logy-logz)+y^(logz-logx)+z^(logx-logy)ge3 .

ARIHANT PUBLICATION JHARKHAND-LOGARITHMS -Exam Booster For Cracking JEE
  1. The value of x^((logy-logz))xx y^((logz - logx)) xx z^((log x- logy)) ...

    Text Solution

    |

  2. log(5sqrt(5))5 is equal to

    Text Solution

    |

  3. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  4. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  5. IF a = log(24) 12, b = log(36) 24, c = log(48)36, then 1 + abc is equ...

    Text Solution

    |

  6. Find the value of 81^((1//(log)5 3))+27^log36+3^((4/((log)7)9))

    Text Solution

    |

  7. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  8. If log(8)m + log(6) (1)/(6) = (2)/(3), then m is equal to

    Text Solution

    |

  9. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  10. If log x, log y and log z are in AP, then

    Text Solution

    |

  11. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  12. If log(a)m = x, then log(1//a) ""(1)/(m) is equal to

    Text Solution

    |

  13. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  14. The value of 7 log(a) ""(16)/(15) + 5log(a) ""(25)/(24) + 3 log(a) ""(...

    Text Solution

    |

  15. (1)/((log(a)bc)+1)+(1)/((log(b)ac)+1)+(1)/((log(c)ab)+1) is equal to

    Text Solution

    |

  16. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  17. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  18. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  19. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  20. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  21. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |