Home
Class 12
MATHS
The index form of root9(((4)/(5))^(2)) i...

The index form of `root9(((4)/(5))^(2))` is

A

`((4)/(5))^(2/9)`

B

`((4)/(5))^(3)`

C

`((4)/(5))^(1//2)`

D

`((4)/(5))^(1//27)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the index form of \( \sqrt[9]{\left(\frac{4}{5}\right)^2} \), we will follow these steps: ### Step 1: Rewrite the expression using exponent notation The expression \( \sqrt[9]{\left(\frac{4}{5}\right)^2} \) can be rewritten using exponent notation. The \( n \)-th root of a number can be expressed as that number raised to the power of \( \frac{1}{n} \). \[ \sqrt[9]{\left(\frac{4}{5}\right)^2} = \left(\left(\frac{4}{5}\right)^2\right)^{\frac{1}{9}} \] ### Step 2: Apply the power of a power property Next, we apply the power of a power property, which states that \( (a^m)^n = a^{m \cdot n} \). In our case, we have: \[ \left(\left(\frac{4}{5}\right)^2\right)^{\frac{1}{9}} = \left(\frac{4}{5}\right)^{2 \cdot \frac{1}{9}} = \left(\frac{4}{5}\right)^{\frac{2}{9}} \] ### Step 3: Express the fraction in terms of its base components Now we can express \( \left(\frac{4}{5}\right)^{\frac{2}{9}} \) in terms of its base components: \[ \left(\frac{4}{5}\right)^{\frac{2}{9}} = \frac{4^{\frac{2}{9}}}{5^{\frac{2}{9}}} \] ### Step 4: Write the final index form Thus, the index form of \( \sqrt[9]{\left(\frac{4}{5}\right)^2} \) is: \[ \frac{4^{\frac{2}{9}}}{5^{\frac{2}{9}}} \] ### Final Answer The index form of \( \sqrt[9]{\left(\frac{4}{5}\right)^2} \) is \( \frac{4^{\frac{2}{9}}}{5^{\frac{2}{9}}} \). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster (For Cracking Exam)|20 Videos
  • HYDROSTATICS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam booster for cracking exam|35 Videos
  • LOGARITHMS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster For Cracking JEE|20 Videos

Similar Questions

Explore conceptually related problems

root(5)(root(4)(3^2))

Simplest form of root(4r)(x^6)+root(2r)(z^(-5)) is

Express the following in the simplest form : root(4)(root(5)(1048576))

The exponential form for (-2)^(4)xx(5/2)^(4) is 5^(4)

root(6)((root(2)(5^4))^6)

The expression (root(3)(root(6)(a^(9))))^(4)(root(6)(root(3)(a^(9))))^(4) is simplified to a^(16)(b)a^(12)(c)a^(8)(d)a^(4)

The expression [root(3)(root(6)(a^(9)))]^(4)[root(6)(root(3)(a^(9)))]^(4) is simplified to a.a ^(16) b.a^(12) c.a^(8) d.a^(4)