Home
Class 10
MATHS
If cos 2A = sin (A - 15^(@)), find A....

If cos 2A = sin `(A - 15^(@))`, find A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2A = \sin (A - 15^\circ) \), we can follow these steps: ### Step 1: Rewrite \( \cos 2A \) We know that \( \cos 2A \) can be expressed in terms of sine: \[ \cos 2A = \sin(90^\circ - 2A) \] So we can rewrite the equation as: \[ \sin(90^\circ - 2A) = \sin(A - 15^\circ) \] ### Step 2: Set up the sine equation Since \( \sin x = \sin y \) implies that: 1. \( x = y + n \cdot 360^\circ \) or 2. \( x = 180^\circ - y + n \cdot 360^\circ \) for some integer \( n \) We can apply this to our equation: \[ 90^\circ - 2A = A - 15^\circ + n \cdot 360^\circ \quad \text{(1)} \] or \[ 90^\circ - 2A = 180^\circ - (A - 15^\circ) + n \cdot 360^\circ \quad \text{(2)} \] ### Step 3: Solve equation (1) From equation (1): \[ 90^\circ - 2A = A - 15^\circ \] Rearranging gives: \[ 90^\circ + 15^\circ = A + 2A \] \[ 105^\circ = 3A \] Dividing both sides by 3: \[ A = 35^\circ \] ### Step 4: Solve equation (2) From equation (2): \[ 90^\circ - 2A = 180^\circ - A + 15^\circ \] Rearranging gives: \[ 90^\circ - 2A = 195^\circ - A \] \[ A - 2A = 195^\circ - 90^\circ \] \[ -A = 105^\circ \] Dividing by -1: \[ A = -105^\circ \] Since angles are typically considered in the range of \(0^\circ\) to \(360^\circ\), we discard \(A = -105^\circ\) as it is not a valid solution in this context. ### Final Answer Thus, the only valid solution is: \[ A = 35^\circ \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NEW TYPOLOGIES INTRODUCED BY CBSE FOR BOARD 2021-22 EXAM

    OSWAL PUBLICATION|Exercise UNIT-V TRIGONOMETRY (CHAPTER 10 - INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES) (SELF ASSESSMENT)|5 Videos
  • NEW TYPOLOGIES INTRODUCED BY CBSE FOR BOARD 2021-22 EXAM

    OSWAL PUBLICATION|Exercise UNIT-VI MENSURATION (CHAPTER 12 - AREAS RELATED TO CIRCLES) |1 Videos
  • NEW TYPOLOGIES INTRODUCED BY CBSE FOR BOARD 2021-22 EXAM

    OSWAL PUBLICATION|Exercise UNIT-IV GEOMETRY (CHAPTER 9 -CONSTRUCTIONS) (SELF ASSESSMENT)|4 Videos
  • MAT STAGE I 2019-2020

    OSWAL PUBLICATION|Exercise QUESTION PART |100 Videos
  • NTSE 2019 -20

    OSWAL PUBLICATION|Exercise Probability Stage -2|1 Videos

Similar Questions

Explore conceptually related problems

sqrt (2) cos A = cos B + cos ^ (3) Bsqrt (2) sin A = sin B-sin ^ (3) B, find sin (AB)

If sin (A-B)=sin A cos B-cos A sin B and cos (A - B) = cos A cos B + sin A sin B . find the values of sin 15^@ and cos 15^@.

Knowledge Check

  • The value of cos 15^(@) - sin 15^(@) is equal to

    A
    `(1)/(sqrt2)`
    B
    `(1)/(2)`
    C
    `-(1)/(sqrt2)`
    D
    0
  • The values of cos^(2) 45^(@) - sin^(2) 15^(@) is

    A
    `(sqrt(3))/(4)`
    B
    `(sqrt3)/(2)`
    C
    `sqrt3`
    D
    None of these
  • The value of (cos 15^(@) - sin 15^(@))/(cos 15^(@) + sin 15^(@) is

    A
    1
    B
    `sqrt(3)`
    C
    0
    D
    `(1)/(sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    If sin A=(15)/(17) then find cos A

    If cos theta=(15)/(17) , then find sin theta .

    Using the formula cos (A+B) = cosA cosB -sin A sin B . find the value of sin 15^(@) .

    If sin A+sin^(2)A+sin^(3)A=1, then find the value of cos^(6)A-4cos^(4)A+8cos^(2)A

    sin 15^(@) + cos 105 ^(@) =