Home
Class 12
MATHS
The range of the function f(x)=sqrt(3-x)...

The range of the function `f(x)=sqrt(3-x)+sqrt(2+x)` is :

A

`[2sqrt(2),sqrt(11)]`

B

`[sqrt(5),sqrt(10)]`

C

`[sqrt(5),sqrt(13)]`

D

`[sqrt(2),sqrt(7])`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{3 - x} + \sqrt{2 + x} \), follow these steps: ### Step 1: Determine the Domain The function involves square roots, so the expressions inside the square roots must be non-negative. 1. For \( \sqrt{3 - x} \): \[ 3 - x \geq 0 \implies x \leq 3 \] 2. For \( \sqrt{2 + x} \): \[ 2 + x \geq 0 \implies x \geq -2 \] Combining these inequalities, the domain of \( f(x) \) is: \[ -2 \leq x \leq 3 \] ### Step 2: Find Critical Points To find the critical points, we need to differentiate \( f(x) \) and set the derivative equal to zero. 1. Differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \sqrt{3 - x} + \sqrt{2 + x} \right) \] Using the chain rule: \[ f'(x) = \frac{-1}{2\sqrt{3 - x}} + \frac{1}{2\sqrt{2 + x}} \] 2. Set \( f'(x) = 0 \): \[ \frac{-1}{2\sqrt{3 - x}} + \frac{1}{2\sqrt{2 + x}} = 0 \] Simplifying: \[ \frac{1}{\sqrt{2 + x}} = \frac{1}{\sqrt{3 - x}} \] Squaring both sides: \[ 2 + x = 3 - x \] Solving for \( x \): \[ 2x = 1 \implies x = \frac{1}{2} \] ### Step 3: Evaluate \( f(x) \) at Critical Points and Endpoints Evaluate \( f(x) \) at \( x = -2 \), \( x = \frac{1}{2} \), and \( x = 3 \). 1. At \( x = -2 \): \[ f(-2) = \sqrt{3 - (-2)} + \sqrt{2 + (-2)} = \sqrt{5} + \sqrt{0} = \sqrt{5} \] 2. At \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \sqrt{3 - \frac{1}{2}} + \sqrt{2 + \frac{1}{2}} = \sqrt{\frac{5}{2}} + \sqrt{\frac{5}{2}} = 2\sqrt{\frac{5}{2}} = \sqrt{10} \] 3. At \( x = 3 \): \[ f(3) = \sqrt{3 - 3} + \sqrt{2 + 3} = \sqrt{0} + \sqrt{5} = \sqrt{5} \] ### Step 4: Determine the Range From the evaluations, the minimum value of \( f(x) \) is \( \sqrt{5} \) and the maximum value is \( \sqrt{10} \). Therefore, the range of \( f(x) \) is: \[ [\sqrt{5}, \sqrt{10}] \] ### Final Answer The range of the function \( f(x) = \sqrt{3 - x} + \sqrt{2 + x} \) is: \[ \boxed{[\sqrt{5}, \sqrt{10}]} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

Range of the function f(x)=sqrt([x]-x) is

Range ofthe function f(x)=sqrt([x]-x) is

Knowledge Check

  • The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

    A
    `[sqrt3, sqrt6]`
    B
    `[0, sqrt6]`
    C
    `(sqrt3, sqrt6)`
    D
    none of these
  • The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

    A
    `[sqrt(2),2sqrt(2)]`
    B
    `[sqrt(2),sqrt(10)]`
    C
    `[2sqrt(2),sqrt(10)]`
    D
    [1,3]
  • The range of the function f (x) = sqrt(x - x ^(2)) is

    A
    `(0,3) `
    B
    `[0,3]`
    C
    `(0,3]`
    D
    `[0,3)`
  • Similar Questions

    Explore conceptually related problems

    The range of the function f(x)=sqrt(3x^(2)-4x+5) is

    The range of the function f(x)=sqrt(4-x^(2))+sqrt(x^(2)-1) is

    The domain of the function [ f(x)=sqrt(2-x)+sqrt(1+x)" is "]

    The range of the function f(x)=(1)/(sqrt(4+3cos x)) is

    The range of the function f(x)=2sqrt(3x^(2)-4x+5) is