Home
Class 12
MATHS
Let f:""RrarrR be a positive increas...

Let `f:""RrarrR` be a positive increasing function with `lim_(xrarroo)f(3x)/(f(x))=1` . Then `lim_(xrarroo)f(2x)/(f(x))=` (1) `2/3` (2) `3/2` (3) 3 (4) 1

Text Solution

Verified by Experts

`x>0 => 0 < f(2x) < f(2x) < f(3x) `
`0<1< (f(2x))/(f(x)) < (f(3x))/(f(x))`
`1 <= lim_(x-> oo) (f(2x))/(f(x)) <= lim_(x->oo) (f(3x))/(f(x))`
`1 <= lim_(x-> oo) (f(2x))/(f(x)) <= 1`
`lim_(x-> oo) (f(2x))/(f(x)) = 1`
answer
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos
  • LINEAR INEQUALITIES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1 then lim_(x rarr oo)(f(2x))/(f(x))=

lim_(xrarroo) (2x)/(1+4x)

Lim_(xrarroo)((x+1)/(x+2))^(x+3)

Let f(x)=(sqrt(x+3))/(x+1) , then lim_(xrarr-3)f(x)

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

If f: R rightarrow (0, oo) is an increasing function such tha lim_(xrarroo) frac{f(7x)}{f(x)}=1 then the value of lim_(xrarroo) [frac{f(5x)}{f(x)}-1] (where [.] denote the greatest integer function) is

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

The value of lim_(xrarroo) ((3x-4)/(3x+2))^(((x+1)/3)) is