Home
Class 12
MATHS
Let f(x)=|[1+sin^(2)x,cos^(2)x,sin2x],[s...

Let `f(x)=|[1+sin^(2)x,cos^(2)x,sin2x],[sin^(2)x,1+cos^(2)x,sin2x],[sin^(2)x,cos^(2)x,1+sin2x]|,x in[(pi)/(6),pi/(3)]]`.If `alpha` and `beta` respectively are the maximum and the minimum values of `f,` then

A

`beta^(2)+2sqrt(alpha)=(19)/(4)`

B

`alpha^(2)+beta^(2)=(9)/(2)`

C

`alpha^(2)-beta^(2)=4sqrt(3)`

D

`beta^(2)-2sqrt(alpha)=(19)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the maximum and minimum values of the function \( f(x) \) defined by the determinant of a 3x3 matrix. The matrix is given as: \[ \begin{bmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{bmatrix} \] where \( x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \). ### Step-by-Step Solution: 1. **Matrix Simplification using Row Operations:** Let's perform the row operations \( R1 \rightarrow R1 - R2 \) and \( R2 \rightarrow R2 - R3 \) to simplify the determinant. \[ \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix} \] After applying \( R1 \rightarrow R1 - R2 \): \[ \begin{vmatrix} 1 & -1 & 0 \\ \sin^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix} \] After applying \( R2 \rightarrow R2 - R3 \): \[ \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix} \] 2. **Determinant Calculation:** The determinant of the simplified matrix is: \[ f(x) = 1 \cdot \begin{vmatrix} 1 & 0 \\ \cos^2 x & 1 + \sin 2x \end{vmatrix} - (-1) \cdot \begin{vmatrix} 0 & 0 \\ \sin^2 x & 1 + \sin 2x \end{vmatrix} + 0 \cdot \begin{vmatrix} 0 & 1 \\ \sin^2 x & \cos^2 x \end{vmatrix} \] Simplifying the determinant: \[ f(x) = 1 \cdot (1 \cdot (1 + \sin 2x) - 0 \cdot \cos^2 x) - (-1) \cdot (0 \cdot (1 + \sin 2x) - 0 \cdot \sin^2 x) + 0 \] \[ f(x) = 1 + \sin 2x + \cos^2 x + \sin^2 x \] Since \(\cos^2 x + \sin^2 x = 1\): \[ f(x) = 1 + \sin 2x + 1 = 2 + \sin 2x \] 3. **Finding Maximum and Minimum Values:** The function \( f(x) = 2 + \sin 2x \) is dependent on \(\sin 2x\). The range of \(\sin 2x\) is \([-1, 1]\). - The maximum value of \( \sin 2x \) is 1. - The minimum value of \( \sin 2x \) is -1. Therefore: - Maximum value of \( f(x) \) (denoted as \(\alpha\)) is \( 2 + 1 = 3 \). - Minimum value of \( f(x) \) (denoted as \(\beta\)) is \( 2 - 1 = 1 \). ### Final Answer: \[ \alpha = 3, \quad \beta = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

Knowledge Check

  • If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

    A
    A. 2
    B
    B. 4
    C
    C. 6
    D
    D. 8
  • If the max and values of Delta=|(1+sin^2x,cos^2x,sin2x),(sin^2x,1+cos^2x,sin2x),(sin^2x,cos^2x,1+sinx)| and alpha and beta , then

    A
    `alpha +beta^(99) =4`
    B
    `alpha^3-beta^(17) =26`
    C
    `alpha^(2n)-beta^(2n)` is always an even integer for `n in N`
    D
    `EE` a triangle having sides as `alpha, beta and alpha -beta`
  • Similar Questions

    Explore conceptually related problems

    If the maximum and minimum values of the determinant |(1+sin^(2)x,cos^(2)x,sin2x),(sin^(2)x,1+cos^(2)x,sin2x),(sin^(2)x,cos^(2)x,1+sin2x)| are alpha and beta respectively, then alpha+2beta is equal to

    Let f(x)=det[[cos^(2)x,sin2x,-sin xsin2x,2sin^(2)x,cos xsin x,-cos x,0]] than

    Let f(x)=|[1+sin ^2 x, cos ^2 x , 4 sin 2 x],[ sin ^2 x ,1+cos ^2 x , 4 sin 2 x],[ sin ^2 x , cos ^2 x , 1+4 sin 2 x]| , the maximum value of f(x) is

    Let f(x)=1+2sin x+2cos^(2)x,0<=x<=(pi)/(2) then

    Let f(x)=|[cosx, sinx, cosx],[cos2x,sin2x,2cos2x],[cos3x,sin3x,3cos3x]|. Find f'(pi/2)

    If f(x)=det[[sin^(2)x,cos^(2)x,1cos^(2)x,sin^(2)x,1x-12,12,2]] then f'((pi)/(2))=