Home
Class 12
MATHS
If int(0)^(1)(1)/(sqrt(3+x)+sqrt(1+x))dx...

If `int_(0)^(1)(1)/(sqrt(3+x)+sqrt(1+x))dx=a+b sqrt(2)+c sqrt(3)` ,where `a,b,c` are rational numbers, then `2a+3b-4c`, is equal to:

A

7

B

10

C

8

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{1}{\sqrt{3+x} + \sqrt{1+x}} \, dx, \] we will use the technique of rationalization. ### Step 1: Rationalize the Denominator We multiply the numerator and denominator by the conjugate of the denominator: \[ I = \int_{0}^{1} \frac{\sqrt{3+x} - \sqrt{1+x}}{(\sqrt{3+x} + \sqrt{1+x})(\sqrt{3+x} - \sqrt{1+x})} \, dx. \] The denominator simplifies as follows: \[ (\sqrt{3+x})^2 - (\sqrt{1+x})^2 = (3+x) - (1+x) = 2. \] Thus, we have: \[ I = \int_{0}^{1} \frac{\sqrt{3+x} - \sqrt{1+x}}{2} \, dx = \frac{1}{2} \int_{0}^{1} (\sqrt{3+x} - \sqrt{1+x}) \, dx. \] ### Step 2: Split the Integral Now we can split the integral: \[ I = \frac{1}{2} \left( \int_{0}^{1} \sqrt{3+x} \, dx - \int_{0}^{1} \sqrt{1+x} \, dx \right). \] ### Step 3: Evaluate Each Integral 1. **Integral of \(\sqrt{3+x}\)**: Using the substitution \(u = 3+x\), \(du = dx\), the limits change from \(x=0\) to \(u=3\) and from \(x=1\) to \(u=4\): \[ \int \sqrt{3+x} \, dx = \int \sqrt{u} \, du = \frac{2}{3} u^{3/2} + C. \] Evaluating from 3 to 4: \[ \left[ \frac{2}{3} u^{3/2} \right]_{3}^{4} = \frac{2}{3} (4^{3/2} - 3^{3/2}) = \frac{2}{3} (8 - 3\sqrt{3}). \] 2. **Integral of \(\sqrt{1+x}\)**: Using the substitution \(v = 1+x\), \(dv = dx\), the limits change from \(x=0\) to \(v=1\) and from \(x=1\) to \(v=2\): \[ \int \sqrt{1+x} \, dx = \int \sqrt{v} \, dv = \frac{2}{3} v^{3/2} + C. \] Evaluating from 1 to 2: \[ \left[ \frac{2}{3} v^{3/2} \right]_{1}^{2} = \frac{2}{3} (2^{3/2} - 1^{3/2}) = \frac{2}{3} (2\sqrt{2} - 1). \] ### Step 4: Combine the Results Now substituting back into the expression for \(I\): \[ I = \frac{1}{2} \left( \frac{2}{3} (8 - 3\sqrt{3}) - \frac{2}{3} (2\sqrt{2} - 1) \right). \] Simplifying: \[ I = \frac{1}{2} \cdot \frac{2}{3} \left( 8 - 3\sqrt{3} - 2\sqrt{2} + 1 \right) = \frac{1}{3} (9 - 3\sqrt{3} - 2\sqrt{2}). \] ### Step 5: Final Expression Thus, \[ I = 3 - \sqrt{3} - \frac{2}{3} \sqrt{2}. \] ### Step 6: Identify \(a\), \(b\), and \(c\) From the expression \(I = a + b\sqrt{2} + c\sqrt{3}\): - \(a = 3\) - \(b = -\frac{2}{3}\) - \(c = -1\) ### Step 7: Calculate \(2a + 3b - 4c\) Now we compute: \[ 2a + 3b - 4c = 2(3) + 3\left(-\frac{2}{3}\right) - 4(-1). \] Calculating each term: \[ = 6 - 2 + 4 = 8. \] Thus, the final answer is: \[ \boxed{8}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((1)/(2))(1)/(sqrt(3-2x))dx=sqrt(3)-sqrt(2)

if (1)/(sqrt(2)+sqrt(3)+sqrt(5))=a sqrt(2)+b sqrt(3)+c sqrt(30) then value of a+b+c is (where a,b,c are rational numbers)

Knowledge Check

  • If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

    A
    8
    B
    4
    C
    2
    D
    1
  • If (3-2sqrt(5))/(6-sqrt(5))=a+bsqrt(c) where a and b are rational numbers, then what are the values of a and b ?

    A
    `(8)/(35),(-9)/(35)`
    B
    `(8)/(31),(-9)/(31)`
    C
    `(-8)/(31),(9)/(31)`
    D
    `(-8)/(35),(9)/(35)`
  • Similar Questions

    Explore conceptually related problems

    If (9sqrt(3)+11sqrt(2))^((1)/(3))=sqrt(a)+sqrt(b) ,where a and b are rational with a > b.Then

    int_0^1(dx/(sqrt(3+x)+sqrt(1+x)))=A+Bsqrt2+Csqrt3 find 2A-3B-4C

    where c is the constant of integration and m,n in N ,the find the valuc of (m+n). If int(dx)/(1+sqrt(x+1)+sqrt(x))=ax+b sqrt(x)+c int sqrt((x+1)/(x))dx where a,b,care constant,then find the value of (a+b+c)

    int_(0)^(7)(sqrt(7-x))/(sqrt(x)+sqrt(7-x))dx = (a) 1 (b) (7)/(2) (c) 5 (d) 7

    If 4/(1+sqrt2+sqrt3)=a+b sqrt2+c sqrt3-d sqrt6 , where a, b, c. d are natural numbers, then the value of a + b+ c + d is: यदि 4/(1+sqrt2+sqrt3)=a+b sqrt2+c sqrt3-d sqrt6 जहां a, b, c ,d प्राकृतिक संख्याएँ है, तो a+b+ c+ d का मान है:

    If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to