Home
Class 12
MATHS
If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le...

If `f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):}` and `h(x) = f(|x|) |(x)|` then `int_0^k h(x) dx` is equal to (where `0

A

k

B

`k/2`

C

`(2k)/3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_0^k h(x) \, dx \) where \( h(x) = f(|x|) + |f(x)| \) and \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} -2 & \text{if } -2 \leq x < 0 \\ x - 2 & \text{if } 0 \leq x \leq 2 \end{cases} \] ### Step 1: Determine \( f(|x|) \) Since we are interested in \( h(x) = f(|x|) + |f(x)| \), we first need to evaluate \( f(|x|) \): - For \( x \) in the interval \( [0, 2] \), \( |x| = x \), so: \[ f(|x|) = f(x) = x - 2 \] - For \( x < 0 \), \( |x| = -x \). Since \( -x \) is positive, we have: \[ f(|x|) = f(-x) = -2 \] ### Step 2: Determine \( |f(x)| \) Next, we need to evaluate \( |f(x)| \): - For \( x \) in the interval \( [0, 2] \): \[ f(x) = x - 2 \implies |f(x)| = |x - 2| = 2 - x \quad \text{(since \( x - 2 \) is negative in this interval)} \] - For \( x < 0 \): \[ f(x) = -2 \implies |f(x)| = 2 \] ### Step 3: Define \( h(x) \) Now we can define \( h(x) \): - For \( x \in [0, 2] \): \[ h(x) = f(x) + |f(x)| = (x - 2) + (2 - x) = 0 \] - For \( x < 0 \): \[ h(x) = f(-x) + |f(x)| = -2 + 2 = 0 \] Thus, we conclude that: \[ h(x) = 0 \quad \text{for all } x \] ### Step 4: Evaluate the Integral Now we need to evaluate the integral: \[ \int_0^k h(x) \, dx = \int_0^k 0 \, dx = 0 \] ### Final Answer The value of the integral \( \int_0^k h(x) \, dx \) is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

Evaluate: int_-2^2 f(x) dx where f(x)={:{(2x-1,-2 le x le1),(3x-2,1lex le2):}

Knowledge Check

  • If f(x)={(1-x",", 0 le x le 2),(x-1",", 2 le x le 4),(1",", 4 le x le 6):} then find, f(0) +f((1)/(2)) +f(1)+ f((45)/(48))

    A
    1
    B
    2
    C
    3
    D
    None of these
  • Let f(x) = {{:(-1,-2 le x lt 0),(x^2-1,0 le x le 2):} and g(x)=|f(x)|+f(|x|) . Then , in the interval (-2,2),g is

    A
    not differentiable at one point
    B
    not differentiable at two points
    C
    differentiable at all points
    D
    not continuous
  • Let f(x) be defined on [-2,2[ such that f(x)={{:(,-1,-2 le x le 0),(,x-1,0 le x le 2):} and g(x)= f(|x|)+|f(x)| . Then g(x) is differentiable in the interval.

    A
    [-2,2]`
    B
    `[-2,0) uu (0,2]`
    C
    `[-2,1) uu (1,2]`
    D
    `[-2,0) uu (0,1) uu (1,2]`
  • Similar Questions

    Explore conceptually related problems

    Let f(x) be defined on [-2,2] and is given by f(x)={{:(,-1,-2 le x le 0),(,x-1,0 lt x le 2):} and g(x) =f(|x|)+|f(x)| . Then g(x) is equal to

    If f(x)={(2x^2+1,x le1),(4x^3-1,xgt1):} then int_0^2 f(x) dx is equal to

    If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is

    Let f(x)={{:(-1","-2lex lt0),(x^(2)-1","0le x le 2):} and g(x)=|f(x)|+f(|x|) . Then in the interval (-2,2) , g is

    f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx Consider the functions h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(2)(x) ?