Home
Class 11
MATHS
In triangle ABC , prove that tan (B-C)/2...

In triangle ABC , prove that `tan (B-C)/2 =[( b-c) /(b+c )] cot A/2` , ` tan (C-A)/2 = [(c-a)/(c+a)]cot B/2 `,` tan (A-B)/2 = [(a-b)/(a+b)]cot c/2`

Text Solution

AI Generated Solution

To prove the identities given in the question, we will use the sine rule and some trigonometric identities. Let's break down the proof step by step. ### Step 1: Use the Sine Rule We know from the sine rule that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \] where \( k \) is a constant. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.3|25 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.5|16 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC , prove that tan((C-A)/(2))=((c-a)/(c+a))cot(B)/(2) .

In any triangle ABC , prove that tan ((A-B)/(2))=((a-b)/(a+b))cot (C)/(2) .

In a Delta ABC, prove that tan((A+B)/(2))=cot((c)/(2))

Prove that in triangle ABC “tan”(B-C)/2=(b-c)/(b+c)”cot” A/2

In a Delta ABC prove that (tan(A+B))/(2)=(cot C)/(2)

In any Delta ABC, prove that :tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))

In a triangle ABC, prove that (a^2+b^2-c^2)tan C-(b^2+c^2-a^2)tan A=0

In any Delta ABC, prove that :1-tan((A)/(2))tan((B)/(2))=(2c)/(a+b+c)

In a triangle ABC, prove that (a)cos(A+B)+cos C=0(b)tan((A+B)/(2))=cot((C)/(2))

In any Delta ABC, porve that (a+b-c)cot((B)/(2))=(a-b+c)cot((C)/(2))