Home
Class 12
MATHS
If alpha and beta are the two different ...

If `alpha` and `beta` are the two different roots of equations `alpha cos theta+b sin theta=c`, prove that
(a) `tan (alpha-beta)=(2ab)/(a^(2)-b^(2))` (b) `cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))`

Text Solution

Verified by Experts

Since `alpha` and `beta` are the roots of the equation
`alpha cos theta+b sin theta=c,` we have
and `alpha cos beta+b sin beta=c`
Subtracting Eq. ii from Eq. i, we get
`a(cos alpha-cos beta)+b(sin alpha-sinbeta)=0`
or `(b(sin alpha-sin beta)-a(cos beta-cos alpha)=0`
or `2bcos ""(alpha+beta)/(2)sin""(alpha-beta)/(2)=2a sin""(alpha+beta)/(2)sin""(alpha-beta)/(2)`
or `tan""(alpha+beta)/(2)=(b)/(a)` [as `alpha,beta` are different, `sin""(alpha-beta)/(2)ne0`]
Now, `sin (alpha+beta)=(2tan""(alpha+beta)/(2))/(1+tan^(2)""(alpha+beta)/(2))=(2(b)/(a))/(1+(b^(2))/(a^(@)))=(2ab)/(a^(2)+b^(2))`
(a) `tan ""(alpha+beta)=(2tan((alpha+beta)/(2)))/(1-tan^(2)((alpha+beta)/(2))=(2ab)/(a^(2)-b^(2))`
(b) `cos"" (alpha+beta)=(1-tan^(2)((alpha+beta)/(2)))/(1+tan^(2)((alpha+beta)/(2)))=(1-(b^(2))/(a^(2)))/(1+(b^(2))/(a^(2)))=(a^(2)-b^(2))/(a^(2)+b^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.6|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta be the two different roots of equation a cos theta+b sin theta=c ,prove that : tan(alpha+beta)=(2ab)/(a^(2)-b^(2))

If alpha and beta be two different roots of equation,a cos theta+b sin theta=c prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

Knowledge Check

  • If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

    A
    ` (2 ab)/(a^(2)+ b^(2))`
    B
    ` (2 ab)/(a^(2) - b^(2))`
    C
    ` (a^(2) + b^(2))/(a^(2) - b^(2))`
    D
    ` (a^(2) - b^(2))/(a^(2) + b^(2))`
  • Similar Questions

    Explore conceptually related problems

    If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

    If alpha and beta are distict roots of a cos theta+b sin theta=c, prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

    If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

    If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

    If alpha and beta are the solutions roots of a cos theta+b sin theta=c, then choose the correct option (A)sin alpha+sin beta=(2bc)/(a^(2)+b^(2))(B)sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))(C)sin alpha+sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)sin alpha sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)

    If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))

    If s in alpha+s in beta=a and cos alpha+cos beta=b show that: sin(alpha+beta)=(2ab)/(a^(2)+b^(2))cos(alpha+beta)=(b^(2)-a^(2))/(b^(2)+a^(2))