Home
Class 12
MATHS
If tan beta=2sin alpha sin gamma co sec(...

If `tan beta=2sin alpha sin gamma co sec(alpha+gamma)`, then `cot alpha,cot beta,cotgamma` are in

A

AP

B

GP

C

HP

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan \beta = 2 \sin \alpha \sin \gamma \csc(\alpha + \gamma) \] ### Step 1: Rewrite \(\tan \beta\) in terms of \(\cot \beta\) We know that: \[ \tan \beta = \frac{1}{\cot \beta} \] Thus, we can rewrite the equation as: \[ \frac{1}{\cot \beta} = 2 \sin \alpha \sin \gamma \csc(\alpha + \gamma) \] ### Step 2: Express \(\cot \beta\) Taking the reciprocal of both sides gives: \[ \cot \beta = \frac{1}{2 \sin \alpha \sin \gamma \csc(\alpha + \gamma)} \] Using the identity \(\csc(\theta) = \frac{1}{\sin(\theta)}\), we can rewrite \(\csc(\alpha + \gamma)\): \[ \cot \beta = \frac{\sin(\alpha + \gamma)}{2 \sin \alpha \sin \gamma} \] ### Step 3: Expand \(\sin(\alpha + \gamma)\) Using the sine addition formula: \[ \sin(\alpha + \gamma) = \sin \alpha \cos \gamma + \cos \alpha \sin \gamma \] Substituting this back into the expression for \(\cot \beta\): \[ \cot \beta = \frac{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma}{2 \sin \alpha \sin \gamma} \] ### Step 4: Simplify the expression We can separate the terms in the numerator: \[ \cot \beta = \frac{\sin \alpha \cos \gamma}{2 \sin \alpha \sin \gamma} + \frac{\cos \alpha \sin \gamma}{2 \sin \alpha \sin \gamma} \] This simplifies to: \[ \cot \beta = \frac{\cos \gamma}{2 \sin \gamma} + \frac{\cos \alpha}{2 \sin \alpha} \] ### Step 5: Relate \(\cot \alpha\) and \(\cot \gamma\) We know: \[ \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \] \[ \cot \gamma = \frac{\cos \gamma}{\sin \gamma} \] ### Step 6: Establish the relationship Now we can express \(2 \cot \beta\): \[ 2 \cot \beta = \frac{\cos \gamma}{\sin \gamma} + \frac{\cos \alpha}{\sin \alpha} \] This can be rewritten as: \[ 2 \cot \beta = \cot \gamma + \cot \alpha \] ### Conclusion: Determine the relationship The equation \(2 \cot \beta = \cot \alpha + \cot \gamma\) indicates that \(\cot \alpha\), \(\cot \beta\), and \(\cot \gamma\) are in Arithmetic Progression (AP). Thus, the final answer is: **Cotangent values are in AP.** ---

To solve the problem, we start with the given equation: \[ \tan \beta = 2 \sin \alpha \sin \gamma \csc(\alpha + \gamma) \] ### Step 1: Rewrite \(\tan \beta\) in terms of \(\cot \beta\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If 2 sin alpha cos beta sin gamma=sin beta sin(alpha+gamma) then tan alpha , tan beta, tan gamma are in A) A.P.B) G.P.C) H.P.D) None of these

If cos(alpha + gamma)/cos(alpha - gamma) = cos 2beta then tan alpha, tan beta and tan gamma are

Knowledge Check

  • If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    none of these
  • If sin alpha , sin beta, sin gamma are in A.P. and cos alpha, cos beta, cos gamma are in G.P. then (cos^(2)alpha+cos^(2)gamma - 4 cos alpha cos gamma)/(1-sin alpha sin gamma)=

    A
    `-2`
    B
    `-1`
    C
    0
    D
    2
  • If : 1+sin alpha * sin beta-cos alpha* cos beta=0" ""then" : tan alpha*cot beta=

    A
    -3
    B
    -2
    C
    -1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If sin alpha,sin beta,sin gamma are in AP then cos alpha,cos beta,cos gamma are in GP then (cos^(2)alpha+cos^(2)gamma-4cos alpha cos gamma)/(1-sin alpha sin gamma)=

    prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

    If cos alpha +cos beta+cos gamma = sin alpha+sin beta+sin gamma=0 , then cos 3 alpha + cos 3 beta + cos 3 gamma is equal to

    If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

    If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :