Home
Class 12
MATHS
In A B C Prove that cos^2A/2+cos^2B/2+...

In ` A B C` Prove that `cos^2A/2+cos^2B/2+cos^2C/2lt=9/4dot` In `cos^2A/2+cos^2B/2+cos^2C/2=y(x^2+1/(x^2))` then find the maximum value of `ydot`

Text Solution

Verified by Experts

The correct Answer is:
`9//8`

(a) In `triangle ABC`, we know that
`cosA+cosB+cos Cle(3)/(2)`
`cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)`
`=(1+cosA)/(2)+(1+cosB)/(2)+(1+cosC)/(2)`
`=(3)/(2)+(cos A+cosB+cosC)/(2)le(3)/(2)+(3)/(4)` (using eq. i)
`therefore cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)le(9)/(4)`.
(b) `cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)=y(x^(2)+(1)/(x^(2)))`
`therefore y(x^(2)+(1)/(x^(2)))le(9)/(4)`.
`therefore yle(9)/(4(x^(2)+(1)/(x^(2)))`
Now `x^(2)+(1)/(x^(2))ge2`
`therefore yle(9)/(8)`.
thus, maximum value of `y` is `(9)/(8)`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Single)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2(A/2) + cos^2(B/2) - cos^2(C/2) = 2cos(A/2) cos(B/2) sin( C/2)

In a /_ABC, prove that cos^(2)(2A)+cos^(2)(2B)+cos^(2)(2C)=1+2cos2A cos2B cos2C

Knowledge Check

  • 4Rr cos ""A/2 cos""B/2 cos ""C/2=

    A
    s
    B
    `s^2`
    C
    `S^2`
    D
    S
  • Similar Questions

    Explore conceptually related problems

    Prove that a cos^(2)(A/2)+b cos^(2)(B/2)+c cos^(2)(C/2)=s+(Delta)/(R)

    In a /_ABC prove that cos2A+cos2B+cos2C=-1-4cos A cos B cos C

    If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

    If A+B+C = pi prove that cos 4A + cos 4B + cos 4C = -1 + 4 cos 2A cos 2B cos 2C

    If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

    If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.

    In DeltaABC , prove that: a(cos^(2)C/3-cos^(2)B/2)=(b-c).cos^(2)A/2