Home
Class 12
MATHS
Solve cos x + cos 2x+...+ cos (nx) =n, n...

Solve `cos x + cos 2x+...+ cos (nx) =n, n in N`.

Text Solution

Verified by Experts

The correct Answer is:
`x=0`

We have `cos x + cos 2x +...+ cos (nx) =n`
Now, `cosx+cos 2x+...+ cos (nx) le n`
So, `cos x = cos 2x = ... = cos nx=1`
`:. x=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.6|4 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

cos x + cos2x + ... + cos nx = sin ((nx) / (2)) cos ec ((x) / (2)) cos (((n + 1) x) / (2))

lim_ (n rarr oo) ((cos x) / (2) * (cos x) / (4) (cos x) / (2 ^ (n)))

Knowledge Check

  • If cos x/2 cos x/2^2… cos x/2^n= sin x /

    A
    cot x-cot `x/2^n`
    B
    `1/2^n cot (x/2^n)-cot x`
    C
    `1/2^n tan (x/2^n)-tan x`
    D
    `1/2 cotx- 1/2^n-cot (x/2^n)`
  • If y =(cos x -sin x )/( cos x + si nx ) ,the n(dy)/(dx) =

    A
    ` (2)/( 1+sin 2x ) `
    B
    ` (-2)/( 1+sin 2x) `
    C
    ` (1)/( 1+sin 2x ) `
    D
    ` (-1)/( 1+sin 2x) `
  • Similar Questions

    Explore conceptually related problems

    lim_ (n rarr oo) cos (x) / (2) * cos (x) / (4) * cos (x) / (8) ...... cos (x) / (2 ^ (n))

    int x ^ (2n-1) cos x ^ (n) dx

    Using the equality (sin (n + (1)/(2))x)/( 2 sin""(pi)/(2))=(1)/(2) + cos x + cos 2 x + . . . . . + cos nx

    sin x = 2 ^ (n) * cos (x) / (2) * cos (x) / (2 ^ (2)) * cos (x) / (2 ^ (3)) * ... * cos ( x) / (2 ^ (n)) * sin (x) / (2 ^ (n))

    Prove that nC_ (1) sin x * cos (n-1) x + nC_ (2) sin2x * cos (n-2) x + nC_ (3) sin3x * cos (n-3) x + ... + nC_ ( n) sin nx = 2 ^ (n-1) sin nn

    Prove that (i) cos (n + 2) x cos (n+1) x +sin (n+2) x sin (n+1) x = cos x) (ii) " cos " .((pi)/(4)-x) " cos " .((pi)/(4)-y) " - sin " ((pi)/(4)-x ) " sin " ((pi)/(4) -y) =" sin " (x+y)