Home
Class 12
MATHS
The minimum value of (x^4+y^4+z^2)/(x y ...

The minimum value of `(x^4+y^4+z^2)/(x y z)` for positive real numbers `x ,y ,z` is `sqrt(2)` `2sqrt(2)` `4sqrt(2)` `8sqrt(2)`

A

`sqrt(2)`

B

`2sqrt(2)`

C

`4sqrt(2)`

D

`8sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

Using A.M. `ge`. G.M we have
`x^(4) + y^(4) ge 2 x^(2) y^(2)` and `2 x^(2) y^(2) + z^(2) ge sqrt(8)xyz`
`implies (x^(4) + y^(4) + z^(2))/(xyz) ge sqrt(8)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Multiple)|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.4|4 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (x^(4)+y^(4)+z^(2))/(xyz) for positive real numbers x,y,z is (a) sqrt(2)(b)2sqrt(2)(cc)4sqrt(2)(d)8sqrt(2)

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

Knowledge Check

  • (sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=sqrt(3)+3sqrt(2) and y=sqrt(3)-3sqrt(2) , then x^(4)+y^(4)-8x^(2)y^(2) =

    A
    `3914`
    B
    `3010`
    C
    `-486`
    D
    `-856`
  • (sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

    A
    `11`
    B
    `8`
    C
    `152`
    D
    `15`
  • If x, y and 2 are positive real numbers, then sqrt ( x ^(-1) y). sqrt ( y ^(-1) z). sqrt (z ^(-1) x ) is equal to

    A
    2
    B
    3
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Find the least positive real number K such that for any positive real numbers x,y,z the following inequality holds x sqrt(y)+y sqrt(z)+z sqrt(x)<=K sqrt((x+y)(y+z)(z+x))

    factorise 2x^(2)+y^(2)+8z^(2)-2sqrt(2)xy+4sqrt(2)yz-8xz

    Assuming that x,y,z are positive real numbers,simplify each of the following: (sqrt(x))^(-(2)/(3))sqrt(y^(4))-:sqrt(xy^(-(1)/(2)))( ii) 243x^(10)y^(5)z^(10)5

    (sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

    If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in