Home
Class 12
MATHS
The minimum value of (x^4+y^4+z^2)/(x y ...

The minimum value of `(x^4+y^4+z^2)/(x y z)` for positive real numbers `x ,y ,z` is `sqrt(2)` `2sqrt(2)` `4sqrt(2)` `8sqrt(2)`

A

`sqrt(2)`

B

`2sqrt(2)`

C

`4sqrt(2)`

D

`8sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

Using A.M. `ge`. G.M we have
`x^(4) + y^(4) ge 2 x^(2) y^(2)` and `2 x^(2) y^(2) + z^(2) ge sqrt(8)xyz`
`implies (x^(4) + y^(4) + z^(2))/(xyz) ge sqrt(8)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Multiple)|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.4|4 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (x^(4)+y^(4)+z^(2))/(xyz) for positive real numbers x,y,z is (a) sqrt(2)(b)2sqrt(2)(cc)4sqrt(2)(d)8sqrt(2)

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

Find the least positive real number K such that for any positive real numbers x,y,z the following inequality holds x sqrt(y)+y sqrt(z)+z sqrt(x)<=K sqrt((x+y)(y+z)(z+x))

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in

factorise 2x^(2)+y^(2)+8z^(2)-2sqrt(2)xy+4sqrt(2)yz-8xz

Assuming that x,y,z are positive real numbers,simplify each of the following: (sqrt(x))^(-(2)/(3))sqrt(y^(4))-:sqrt(xy^(-(1)/(2)))( ii) 243x^(10)y^(5)z^(10)5

CENGAGE-INEQUALITIES INVOLVING MEANS -Exercise (Single)
  1. The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x...

    Text Solution

    |

  2. A rod of fixed length k slides along the coordinates axes, If it meets...

    Text Solution

    |

  3. The least value of 6tan^2varphi+54cot^2varphi+18 is 54 when A.M.geq GM...

    Text Solution

    |

  4. If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the mi...

    Text Solution

    |

  5. If y=3^(x-1)+3^(-x-1) , then the least value of y is 2 6 2//3 3//2

    Text Solution

    |

  6. Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers...

    Text Solution

    |

  7. If the product of n positive numbers is n^n , then their sum is a posi...

    Text Solution

    |

  8. The minimum value of P=bcx +cay +abz, when xyz=abc, is

    Text Solution

    |

  9. If l ,m ,n are the three positive roots of the equation x^3-a x^2+b x-...

    Text Solution

    |

  10. If positive numbers a ,b ,c are in H.P., then equation x^2-k x+2b^(101...

    Text Solution

    |

  11. For x^2-(a+3)|x|=4=0 to have real solutions, the range of a is (-oo,-7...

    Text Solution

    |

  12. If a ,b ,c are the sides of a triangle, then the minimum value of a/(b...

    Text Solution

    |

  13. If a,b,c,d in R^(+)-{1}, then the minimum value of log(d) a+ log(c)b+l...

    Text Solution

    |

  14. If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is alwa...

    Text Solution

    |

  15. If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always geq12 geq9 lt...

    Text Solution

    |

  16. If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c...

    Text Solution

    |

  17. If a,b,c,in R^(+), and a,b,c, d are in H.P. then

    Text Solution

    |

  18. If a,b,c,in R^(+), such that a+b+c=18, then the maximum value of a^2,b...

    Text Solution

    |

  19. f(x)=((x-2)(x-1))/(x-3), forall xgt3. The minimum value of f(x) is equ...

    Text Solution

    |

  20. If a gt 0, the least value of (a^3+a^2+a+1)^2 is

    Text Solution

    |