Home
Class 12
MATHS
L=lim(xrarr0) (sin(sinx)-sinx)/(ax^(5)+b...

`L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12)`
The value/values of a is

A

`in` R

B

2

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
A

We have `underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12)`
`"In L.H.S. N"^(r)rarr0" when "xrarr0`
`therefore D^(t)" must "rarr0`
`rArrc=0`
Now, `underset(xrarr0)(lim)(sin(sinx)-sinx)/(ax^(5)+bx^(3))`
`=underset(xrarr0)(lim)(2sin((sinx-x)/(2))cos((sinx+x)/(2)))/(ax^(5)+bx^(3))`
`=underset(xrarr0)(lim)(2sin((sinx-x)/(2)))/(((sinx-x)/(2))).(sinx-x)/(2).(cos((sinx+x)/(2)))/(ax^(5)+bx^(3))`
`=underset(xrarr0)(lim)((sinx-x)/(ax^(5)+bx^(3)))`
`=underset(xrarr0)(lim)(cosx-1)/(5ax^(4)+3vx^(2))`
`=underset(xrarr0)(lim)(-sinx)/(20ax^(3)+6vx)" (Using L'Hospital's Rule)"`
`=underset(xrarr0)(lim)(-sinx)/(x).(1)/(20ax^(2)+6a)`
`=-(1)/(6)"for all a"inR`
`therefore" "-(1)/(6a)=-(1)/(12)rArr b=2`
`therefore" "ain R, b=2, c=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of b is

L=lim_(x rarr0)(sin(sin x)-sin x)/(ax^(5)+bx^(3)+c)=-((1)/(12)) The value/values of a is

Knowledge Check

  • lim_(xrarr0)(sinx)^(2tanx)

    A
    is 2
    B
    is 1
    C
    is 0
    D
    does not exist
  • lim_(xrarr0)(cos (sinx)-1)/(x^2)=

    A
    1
    B
    -1
    C
    `1//2`
    D
    `-1//2`
  • lim_(xrarr0)(tanx-sinx)/(x^3)=

    A
    `(1)/(2)`
    B
    `(1)/(4)`
    C
    `(1)/(8)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    lim_(x rarr0)(sin(sin x)-sin x)/(ax^(3)+bx^(5)+c)=-(1)/(12) then

    lim_(xrarr0) (sinax)/(bx)

    lim_(xrarr0) (sinx)/(x)= ?

    lim_(xrarr0) (x^(2)-x)/(sinx)

    lim_(xrarr(pi)/(2)) (1-sinx)tanx=