Home
Class 12
MATHS
If lim(xrarroo) xlog(e)(|(alpha//x,1,gam...

If `lim_(xrarroo) xlog_(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)=-5.` then

A

a = 2

B

b = -4

C

c = 2

D

a + b + c = 8

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`underset(xrarr0)(lim)(ae^(x)+bcosx+ce^(-x))/(e^(2x)-2e^(x)+1)`
`rArr underset(xrarr0)(lim)(a(1+x+(x^(2))/(2)+...)+b(1-(x^(2))/(2)...)+c(1-x+(x^(2))/(2)))/(x^(2)).((x)/(e^(x)-1))^(2)=4`
`rArr" "a+b+c=0, a-c=0 rArr a=c`
`rArr" "(a-b+c)/(c)=4`
`rArr" "a-b+c=8 rArr 2b = -8 rArr b=-4`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If (lim)_(xvecoo)x log_e(|alpha/x1gamma0 1/xbeta1 0 1/x|)=-5,w h e r ealpha,beta,gamma are finite real numbers, then alpha=2,beta=1,gamma in R b. alpha=2,beta=2,gamma=5 c. alpha in R ,beta=1,gamma in R d. alpha in R ,beta=1,gamma=5

Lim_(xrarroo)(1+5/x)^x

Knowledge Check

  • If lim_(xrarroo) xlog_(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)=-5. where alpha, beta, gamma are finite real numbers, then

    A
    `alpha=2, beta=1, gamma in R`
    B
    `alpha=2, beta=2, gamma=5`
    C
    `alpha in R, beta =1, gamma in R`
    D
    `alpha in R, beta = 1, gamma=5`
  • The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

    A
    e
    B
    `e^2`
    C
    `e^4`
    D
    `1//e`
  • The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

    A
    0
    B
    `e^-1`
    C
    `e^-2`
    D
    `e^-3`
  • Similar Questions

    Explore conceptually related problems

    lim_(x rarr0)(1+x)^((1)/(x))=e

    If lim_(x rarr0)(e^(alpha x^(2))-cos sqrt(beta)x)/(x^(2))=(1)/(2) [ where alpha in R-{0},beta in(0,oo)], then 2 alpha+beta equals

    lim_(x rarr0)(e^(alpha x)-e^(beta x))/(sin alpha x-sin beta x)=

    lim_(x rarr0)(3+alpha sin x+beta cos x+log_(e)(1-x))/(3tan^(2)x)=(1)/(3) ,then 2 alpha-beta is equal to

    lim_ (x rarr0) (e ^ (ax) -cos alpha x) / (e ^ (beta x) -cos beta x)