Home
Class 12
MATHS
tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt...

`tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),absxx le 1/sqrt2`, is equal to

A

`1/2cos^(-1)x^2`

B

`pi/4-1/2cos^(-1)x^2`

C

`pi/4+1/2cos^(-1)x^2`

D

`pi/2-1/2cos^(-1)x^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) (sqrt(1+x^2)-sqrt(1-x^2))/(sqrt((1+x^2))+sqrt((1-x^2))

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=

Knowledge Check

  • The value of tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))],|x|lt1/2 x is !=0 equal to

    A
    `(pi)/4+1/2"cos^(-1)x^(2)`
    B
    `(pi)/4-"cos"^(-1)x^(2)`
    C
    `(pi)/4-1/2cos^(-1)x^(2)`
    D
    `(pi)/4+cos^(-1)x^(2)`
  • If y=tan^(-1)""(sqrt(1+x^2)-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) , then (dy)/(dx) is equal to

    A
    `(x^(2))/(sqrt(1-x^(4)))`
    B
    `(x^(2))/(sqrt(1-x^(4)))`
    C
    `(x)/(sqrt(1+x^(4)))`
    D
    `(x)/(sqrt(1-x^(4)))`
  • If y= tan^(-1) ""[(sqrt(1+x^2)+ sqrt(1-x^2))/( sqrt(1+x^2)- sqrt(1-x^2))], then (dy)/(dx) equals

    A
    `(1)/(sqrt(1-x^4))`
    B
    `-(1)/( sqrt(1-x^4))`
    C
    `(x)/( sqrt(1-x^4))`
    D
    `-(x)/(sqrt(1-x^4))`
  • Similar Questions

    Explore conceptually related problems

    If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

    tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))],|x|<(1)/(2),x!=0

    if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

    if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

    y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)