Home
Class 12
MATHS
If lim(x to 0) (x^(3))/(sqrt(a + x) (bx...

If `lim_(x to 0) (x^(3))/(sqrt(a + x) (bx - "sin"x)) = 1, a in R^(+)`, then the value of a + b + 1975 is …..

Text Solution

Verified by Experts

The correct Answer is:
2012
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - I|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 1) (1 + ax + bx^(2))^((c )/(x - 1)) = e^(3) , then the value of a + b + bc + 2009 is…….

lim_(xto0)(sin2x)/(1-sqrt(1-x))

Knowledge Check

  • If lim_(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0 , then a+b is equal to

    A
    36
    B
    37
    C
    38
    D
    40
  • If lim_(x to 0)(x(1+ a cos x)- b sin x)/x^(3)=1 , then a,b are

    A
    `1/2, -3/2`
    B
    `5/2, 3/2`
    C
    `-5/2, -3/2`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If lim_(x rarr0)(x^(3))/(sqrt(a+x)(bx-sin x))=1, the the value of constants is

    Given that lim_(x to oo)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

    lim_(x rarr0)(sin x)/(sqrt(x))=

    lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

    lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

    lim_(x rarr0)(sin x)/(sqrt(x^(2)))=