Home
Class 12
MATHS
Show without expanding at any stage that...

Show without expanding at any stage that: ` [0,sinalpha-cosalpha],[-sinalpha,0,sinbeta],[cosalphas-sinbeta,0]|=0 `

Text Solution

Verified by Experts

The correct Answer is:
0
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION A|33 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}| .

Show without expanding at any stage that: | (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)| =2 |(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)|

Knowledge Check

  • If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

    A
    `A_(alpha).A_((-alpha))=I`
    B
    `A_(alpha).A_((-alpha))=O`
    C
    `A_(alpha).A_(beta)=A_(alphabeta)`
    D
    `A_(alpha).A_(beta)=A_(alpha+beta)`
  • If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?

    A
    `-2sin(alpha+beta)`
    B
    `2cos(alpha+beta)`
    C
    `2sin(alpha+beta)`
    D
    `-2cos(alpha+beta)`
  • Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

    A
    `A_(alpha+beta)=A_(alpha)A_(beta)`
    B
    `A_(alpha)^(-1)=A_(-alpha)`
    C
    `A_(alpha)^(-1)=-A_(alpha)`
    D
    `A_(alpha)^(2)=-I`
  • Similar Questions

    Explore conceptually related problems

    Show without expanding at any stage that: [0,a,-b],[-a,0,-c],[b,c,0]|=0

    costheta-sintheta=cosalpha-sinalpha

    Show by vector method that sin(alpha-beta)=sinalphacosbeta-cosalpha sinbeta.

    Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

    If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these