Home
Class 12
MATHS
Let A=[{:(costheta,sintheta),(-sintheta,...

Let `A=[{:(costheta,sintheta),(-sintheta,costheta):}]`, then `abs(2A)` is equal to

A

`4 cos 2 theta`

B

`1`

C

`2`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \text{abs}(2A) \) where \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ a = \cos \theta, \quad b = \sin \theta, \quad c = -\sin \theta, \quad d = \cos \theta \] Substituting these values into the determinant formula: \[ \text{det}(A) = (\cos \theta)(\cos \theta) - (\sin \theta)(-\sin \theta) \] \[ = \cos^2 \theta + \sin^2 \theta \] Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \text{det}(A) = 1 \] ### Step 2: Use the property of determinants to find \( \text{det}(2A) \) The property of determinants states that for a scalar \( k \) and an \( n \times n \) matrix \( A \): \[ \text{det}(kA) = k^n \cdot \text{det}(A) \] Here, \( k = 2 \) and \( n = 2 \) (since \( A \) is a \( 2 \times 2 \) matrix): \[ \text{det}(2A) = 2^2 \cdot \text{det}(A) = 4 \cdot 1 = 4 \] ### Conclusion Thus, the absolute value of the determinant of \( 2A \) is: \[ \text{abs}(2A) = 4 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

Knowledge Check

  • if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

    A
    `[{:(1,0),(0,1):}]`
    B
    `[{:(0,1),(1,0):}]`
    C
    `[{:(1,0),(0,-1):}]`
    D
    None of these
  • If A = ((costheta,-sintheta),(sintheta,costheta)) then

    A
    A is an orthogonal matrix
    B
    A is a symmetric matrix
    C
    A is a skew -symmetric matrix
    D
    none of these
  • If A=[[costheta, sintheta], [-sintheta, costheta]] , then

    A
    A is singular
    B
    `A^(-1)` exists
    C
    `A^(-1)` does not exists
    D
    `A^(-1)` is singular
  • Similar Questions

    Explore conceptually related problems

    Let A={:[(costheta,-sintheta),(-sintheta,-costheta)]:} then inverse of A is

    If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

    If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

    If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

    If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=