Home
Class 12
MATHS
Let A=[{:(costheta,sintheta),(-sintheta,...

Let `A=[{:(costheta,sintheta),(-sintheta,costheta):}]`, then `abs(2A)` is equal to

A

`4 cos 2 theta`

B

`1`

C

`2`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \text{abs}(2A) \) where \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ a = \cos \theta, \quad b = \sin \theta, \quad c = -\sin \theta, \quad d = \cos \theta \] Substituting these values into the determinant formula: \[ \text{det}(A) = (\cos \theta)(\cos \theta) - (\sin \theta)(-\sin \theta) \] \[ = \cos^2 \theta + \sin^2 \theta \] Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \text{det}(A) = 1 \] ### Step 2: Use the property of determinants to find \( \text{det}(2A) \) The property of determinants states that for a scalar \( k \) and an \( n \times n \) matrix \( A \): \[ \text{det}(kA) = k^n \cdot \text{det}(A) \] Here, \( k = 2 \) and \( n = 2 \) (since \( A \) is a \( 2 \times 2 \) matrix): \[ \text{det}(2A) = 2^2 \cdot \text{det}(A) = 4 \cdot 1 = 4 \] ### Conclusion Thus, the absolute value of the determinant of \( 2A \) is: \[ \text{abs}(2A) = 4 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

If A = ((costheta,-sintheta),(sintheta,costheta)) then

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

Let A={:[(costheta,-sintheta),(-sintheta,-costheta)]:} then inverse of A is

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=

AAKASH INSTITUTE-DETERMINANTS -SECTION A
  1. Let A=[{:(costheta,sintheta),(-sintheta,costheta):}], then abs(2A) is ...

    Text Solution

    |

  2. Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| ...

    Text Solution

    |

  3. If A is a square matrix of order n , prove that |Aa d jA|=|A|^n

    Text Solution

    |

  4. The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is eq...

    Text Solution

    |

  5. The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is eq...

    Text Solution

    |

  6. If A is 3xx3 matrix and |A|=4, then |A^(-1)| is equal to

    Text Solution

    |

  7. If A is a square matrix of order 3 such that ||A =3, then find the val...

    Text Solution

    |

  8. If A, B and C are three sqare matrices of the same order such that A ...

    Text Solution

    |

  9. If delta =|(a1,b1,c1),(a2,b2,c2),(a3,b3,c3)| then the value of |(2a1+3...

    Text Solution

    |

  10. If the system of equations x + 4ay + az = 0 and x + 3by + bz = 0 and x...

    Text Solution

    |

  11. Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then ...

    Text Solution

    |

  12. Let x + y + z = 6, 4x + lambday - lambdaz = 0,3x + 2y - 4z = -5. The v...

    Text Solution

    |

  13. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  14. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  15. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  16. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  17. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  18. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is eqaual to

    Text Solution

    |

  19. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  20. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |