Home
Class 12
MATHS
STATEMENT-1 : lim(x->oo)(log[x])/([x])=0...

STATEMENT-1 : `lim_(x->oo)(log[x])/([x])=0`. STATEMENT-2 : `lim_(x->0)(sqrt(sec^2-1))/x` does not exist. STATEMENT-3: `lim_(x->2)(x-1)^(1/(x-2)) = 1`

A

TTT

B

TTF

C

FTF

D

FFF

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - I|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - G|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1: lim_(x rarr oo)(log[x])/(sqrt(([x])/(sec^(2)-1)))=0 STATEMENT-2: lim_(x rarr0)(sqrt(sec^(2)-1))/(x) does not exist.STATEMENT-3: lim_(x rarr2)(x-1)^((1)/(x-2))=1

lim_(x->0) (x^2-3x+1)/(x-1)

Knowledge Check

  • Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

    A
    Statement 1 is true, Statement 2 is true, Statement 2 is correct explanation for statement 1.
    B
    Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation for statement 1.
    C
    Statement 1 is true, Statement 2 is false
    D
    Statement 1 is false, Statement 2 is true
  • Similar Questions

    Explore conceptually related problems

    lim_(x rarr0)(sec x-1)/(x^(2))

    lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

    lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

    lim_(x rarr0)(log(1-(x)/(2)))/(x)

    lim_(x rarr oo)(x( sqrt(1+x^(2))-x))

    lim_(x rarr0)(sqrt(1+sin3x)-1)/(log(1+tan2x))

    Statement 1:lim_(x rarr0)(sqrt(1-cos2x))/(x) does not existe.Statement 2:f(x)=(sqrt(1-cos2x))/(x) is not defined at x=0