Home
Class 12
MATHS
Let A vector veca =alpha hati + 2hatj +...

Let A vector `veca =alpha hati + 2hatj + beta hatk` `(alpha, beta in R)`,`veca` lies in the plane of the vectors, ` vecb= hati + hatj` and `vecc= hati -hatj+4hatk`. If `veca` bisects the angle between `vecb and vecc`, then :

A

`vec a* veci +3 =0`

B

`vec a*hati + 1=0`

C

`vec a * hatk+2=0`

D

`veca*hatk +4=0`

Text Solution

Verified by Experts

The correct Answer is:
`C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATH|25 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos

Similar Questions

Explore conceptually related problems

vecA=4hati+4hatj-4hatk and vecB=3hati+hatj+4hatk , then angle between vectors vecA and vecB is

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

Knowledge Check

  • If vecA = hati + 2hatj - hatk , vecB = - hati + hatj - 2hatk , then angle between vecA and vecB is

    A
    `pi/2`
    B
    0
    C
    `pi`
    D
    `pi/3`
  • If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

    A
    `30^(@)`
    B
    `45^(@)`
    C
    `60^(@)`
    D
    `90^(@)`
  • Given the vector vecA=2hati+3hatj-hatk, vecB=3hati-2hatj-2hatk & vecC=phati+phatj+phatk . Find the angle between (vecA-vecB) &vecC

    A
    `theta=cos^(-1)""((2)/(sqrt(3)))`
    B
    `theta=cos^(-1)""((sqrt(3))/(2))`
    C
    `theta=cos^(-1)""((sqrt(2))/(3))`
    D
    none of these.
  • Similar Questions

    Explore conceptually related problems

    Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to

    If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

    If vecA=2hati+hatj-hatk. vecB=hati+2hatj+3hatk and vecC=6hati-2hatj-6hatk then the angle between (vecA+vecB) and vecC will be :-

    Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

    Given : vecA = 2hati - hatj + 2hatk and vecB = -hati - hatj + hatk . The unit vector of vecA - vecB is