Home
Class 12
MATHS
int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)d...

`int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx` is equal to

A

`(pi)/(4)-(1)/(4)`

B

`(pi)/(4)+(1)/(4)`

C

`(pi)/(4)+(1)/(2)`

D

`(pi)/(4)-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx, \] we can use the property of definite integrals. The property states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In this case, we will set \( a = \frac{\pi}{2} \). ### Step 1: Apply the property Let’s compute \( I \) using the property: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos x + \sin x} \, dx. \] ### Step 2: Combine the integrals Now we can add both expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^3 x}{\sin x + \cos x} + \frac{\cos^3 x}{\sin x + \cos x} \right) \, dx. \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} \, dx. \] ### Step 3: Simplify the numerator Using the identity for the sum of cubes, we have: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x). \] Since \( \sin^2 x + \cos^2 x = 1 \), we can rewrite this as: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x). \] ### Step 4: Substitute back into the integral Substituting this back into our expression for \( 2I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} (1 - \sin x \cos x) \, dx. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx - \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx. \] The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}. \] For the second integral, we use the identity \( \sin x \cos x = \frac{1}{2} \sin 2x \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2x \, dx = \frac{1}{2} \left[-\frac{1}{2} \cos 2x\right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left[-\frac{1}{2} (0 - 1)\right] = \frac{1}{4}. \] ### Step 6: Combine results Now we can combine the results: \[ 2I = \frac{\pi}{2} - \frac{1}{4}. \] ### Step 7: Solve for \( I \) Thus, \[ 2I = \frac{\pi}{2} - \frac{1}{4} = \frac{2\pi - 1}{4}. \] Dividing by 2 gives: \[ I = \frac{2\pi - 1}{8}. \] ### Final Answer Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx = \frac{2\pi - 1}{8}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

int_(0)^(pi//2) (sin^(2)x)/(sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS-Physics
  1. int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

    Text Solution

    |

  2. The moment of inertia of a solid sphere, about an axis parallel to its...

    Text Solution

    |

  3. A load of mass M kg is suspended from a steel wire of length 2 m and r...

    Text Solution

    |

  4. In the value circuit, C=(sqrt(3))/(2)muF,R2=20omega, L=sqrt(3)/(10)H, ...

    Text Solution

    |

  5. An ideal gas is enclosed in a cylinder at pressure of 2 atm and temper...

    Text Solution

    |

  6. In the figure, given that V(BB) supply can vary from 0 to 5.0V,V(CC)=5...

    Text Solution

    |

  7. In the circuit shown, find C if the effective capacitance of the whole...

    Text Solution

    |

  8. An alpha-particle of mass m suffers 1-dimentinal eleastic collision wi...

    Text Solution

    |

  9. A 10 m long horizontal wire extends from North east ro South East. It ...

    Text Solution

    |

  10. To double the covering range of a TV transmittion tower, its height sh...

    Text Solution

    |

  11. A plano-convex lens (focal length f2, refractive indexmu(2), radius of...

    Text Solution

    |

  12. A vertical closed cylinder is separated into two parts by a frictionle...

    Text Solution

    |

  13. Two satellites, A and B, have masses m and 2m respectively. A is in a ...

    Text Solution

    |

  14. A long cylinderical vessel is half filled with a liquid. When the vess...

    Text Solution

    |

  15. A block kept on a rough inclined plane ,as shown in the figure, remain...

    Text Solution

    |

  16. In a Frank-Hertz experiment,an electron of energy 5.6eV passes through...

    Text Solution

    |

  17. A particle of mass 20 g is released with an initial velocity 5m//s alo...

    Text Solution

    |

  18. A galavanometer, whose resistance is 50 ohm has 25 divisions in it. Wh...

    Text Solution

    |

  19. A soap bubble,blown by a mechanical pump at the mouth of a tube, incre...

    Text Solution

    |

  20. In the given circuit diagram, the currents, I1=-0.3A,I4=0.8A and I5=0....

    Text Solution

    |

  21. A resonance tube is old and has jagged end. It is still used in the la...

    Text Solution

    |