Home
Class 12
MATHS
int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)d...

`int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx` is equal to

A

`(pi)/(4)-(1)/(4)`

B

`(pi)/(4)+(1)/(4)`

C

`(pi)/(4)+(1)/(2)`

D

`(pi)/(4)-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx, \] we can use the property of definite integrals. The property states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In this case, we will set \( a = \frac{\pi}{2} \). ### Step 1: Apply the property Let’s compute \( I \) using the property: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos x + \sin x} \, dx. \] ### Step 2: Combine the integrals Now we can add both expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^3 x}{\sin x + \cos x} + \frac{\cos^3 x}{\sin x + \cos x} \right) \, dx. \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} \, dx. \] ### Step 3: Simplify the numerator Using the identity for the sum of cubes, we have: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x). \] Since \( \sin^2 x + \cos^2 x = 1 \), we can rewrite this as: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x). \] ### Step 4: Substitute back into the integral Substituting this back into our expression for \( 2I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} (1 - \sin x \cos x) \, dx. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx - \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx. \] The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}. \] For the second integral, we use the identity \( \sin x \cos x = \frac{1}{2} \sin 2x \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2x \, dx = \frac{1}{2} \left[-\frac{1}{2} \cos 2x\right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left[-\frac{1}{2} (0 - 1)\right] = \frac{1}{4}. \] ### Step 6: Combine results Now we can combine the results: \[ 2I = \frac{\pi}{2} - \frac{1}{4}. \] ### Step 7: Solve for \( I \) Thus, \[ 2I = \frac{\pi}{2} - \frac{1}{4} = \frac{2\pi - 1}{4}. \] Dividing by 2 gives: \[ I = \frac{2\pi - 1}{8}. \] ### Final Answer Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx = \frac{2\pi - 1}{8}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

Knowledge Check

  • int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

    A
    `(pi-1)/2`
    B
    `(pi-1)/4`
    C
    `(1+pi)/4`
    D
    `(pi-3)/4`
  • int_(0)^(pi//2) (sin^(2)x)/(sinx+cosx)dx is equal to

    A
    `(pi)/(2)`
    B
    `sqrt(2)log(sqrt(2)+1)`
    C
    `(1)/(sqrt(2))log(sqrt(2)+1)`
    D
    none of these
  • The value of int_0^(pi/2) sin^2x/(sinx+cosx dx is equal to

    A
    `sqrt2logsqrt2`
    B
    `sqrt2(sqt2+1)`
    C
    `log(sqrt2)+1`
    D
    none of the above
  • Similar Questions

    Explore conceptually related problems

    The value of int_0^(pi/2) sin^2x/(sinx+cosx dx is equal to

    Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

    int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

    The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

    int(cosx-sinx)/(1+2sin x cosx)dx is equal to