Home
Class 12
MATHS
If the function f(x)={(x+a^(2)sqrt(2)...

If the function
`f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):}`
is continuous in the interval `[0,pi]` then the values of (a, b) are

A

`(0,0)`

B

`(0,(1)/(2))`

C

`(0,1)`

D

`(-1,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} x + a^2 \sqrt{2} \sin x & \text{for } 0 \leq x < \frac{\pi}{4} \\ x \cot x + b & \text{for } \frac{\pi}{4} \leq x < \frac{\pi}{2} \\ b \sin 2x - a \cos 2x & \text{for } \frac{\pi}{2} \leq x \leq \pi \end{cases} \] is continuous on the interval \([0, \pi]\), we need to ensure continuity at the points \( x = \frac{\pi}{4} \) and \( x = \frac{\pi}{2} \). ### Step 1: Continuity at \( x = \frac{\pi}{4} \) For continuity at \( x = \frac{\pi}{4} \), we need: \[ \lim_{x \to \frac{\pi}{4}^-} f(x) = \lim_{x \to \frac{\pi}{4}^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \frac{\pi}{4}^-} f(x) = \frac{\pi}{4} + a^2 \sqrt{2} \sin\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + a^2 \sqrt{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{4} + a^2 \] Calculating the right-hand limit: \[ \lim_{x \to \frac{\pi}{4}^+} f(x) = \frac{\pi}{4} \cot\left(\frac{\pi}{4}\right) + b = \frac{\pi}{4} \cdot 1 + b = \frac{\pi}{4} + b \] Setting the two limits equal gives: \[ \frac{\pi}{4} + a^2 = \frac{\pi}{4} + b \] Thus, we have: \[ a^2 = b \quad \text{(1)} \] ### Step 2: Continuity at \( x = \frac{\pi}{2} \) For continuity at \( x = \frac{\pi}{2} \), we need: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \frac{\pi}{2} \cot\left(\frac{\pi}{2}\right) + b = \frac{\pi}{2} \cdot 0 + b = b \] Calculating the right-hand limit: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = b \sin(2 \cdot \frac{\pi}{2}) - a \cos(2 \cdot \frac{\pi}{2}) = b \cdot 0 - a \cdot (-1) = a \] Setting the two limits equal gives: \[ b = a \quad \text{(2)} \] ### Step 3: Solving the equations From equation (1) \( a^2 = b \) and equation (2) \( b = a \), we can substitute \( b \) from equation (2) into equation (1): \[ a^2 = a \] Rearranging gives: \[ a^2 - a = 0 \] Factoring out \( a \): \[ a(a - 1) = 0 \] Thus, \( a = 0 \) or \( a = 1 \). ### Step 4: Finding corresponding \( b \) 1. If \( a = 0 \): \[ b = 0 \] So one solution is \( (a, b) = (0, 0) \). 2. If \( a = 1 \): \[ b = 1 \] So another solution is \( (a, b) = (1, 1) \). ### Final Answer The values of \( (a, b) \) are \( (0, 0) \) and \( (1, 1) \). ---

To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} x + a^2 \sqrt{2} \sin x & \text{for } 0 \leq x < \frac{\pi}{4} \\ x \cot x + b & \text{for } \frac{\pi}{4} \leq x < \frac{\pi}{2} \\ b \sin 2x - a \cos 2x & \text{for } \frac{\pi}{2} \leq x \leq \pi ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

The value of a and b such that the function f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):} is continuous in [-pi,pi] are

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-CONTINUITY-EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  2. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  3. f(x)=((4^x-1)^3)/(sin(x/p)log(1+(x^2)/3) is continuous at x=0 and f(0)...

    Text Solution

    |

  4. If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(...

    Text Solution

    |

  5. If f(x)={((sin 5x)/(x^(2)+2x)",", x ne 0),(k+(1)/(2)",", x =0):} is co...

    Text Solution

    |

  6. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  7. The function f(x) = (4-x^(2))/(4x-x^(3)) is

    Text Solution

    |

  8. If f(x)={(x",", "if x is rational "),(-x",","if x is irrational"):}, ...

    Text Solution

    |

  9. If f(x)={((cosx+3 sinx)^(5 "cosec"x)",",x in ((-pi)/(2),(pi)/(2))-{0}...

    Text Solution

    |

  10. Let f(x)={( sqrt(1+x^(2))",", x lt sqrt(3)),(sqrt(3)x-1",", sqrt(3) le...

    Text Solution

    |

  11. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  12. The function f(x)=x-|x-x^(2)| is

    Text Solution

    |

  13. For the function f(x)=(log(e)(1+x)+log(e)(1-x))/(x) to be continuous a...

    Text Solution

    |

  14. The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi....

    Text Solution

    |

  15. If f:R to R given by f(x)={(2cosx"," , "if", x le -(pi)/(2)),(a sin...

    Text Solution

    |

  16. If the function f(x) ={((x^(2)-(k+2)x+2k)/(x-2),"for " x ne 2),(2," fo...

    Text Solution

    |

  17. If the function f(x)={(x",","if",x le 1),(cx+k"," , "if" , 1 lt x lt 4...

    Text Solution

    |

  18. If f(x)={((3 sin pi x)/(5x)"," , xne 0),(2k",", x =0):} is continuous ...

    Text Solution

    |

  19. If f(x)={(ax+3",",x le 2),(a^(2)x-1"," , x gt 2):}, then the values of...

    Text Solution

    |

  20. f(x)=(7|x|+5x)/(7|x|-5x) for x!=0,f(0)=6at x=0is

    Text Solution

    |