Home
Class 12
MATHS
If lim(x to 1)((e^(k)-1)sin kx)/(x^(2))...

If `lim_(x to 1)((e^(k)-1)sin kx)/(x^(2))=4`, then k is equal to

A

2

B

`-2`

C

`pm 2`

D

`pm 4`

Text Solution

Verified by Experts

The correct Answer is:
C

`lim_(x to 0) ((e^(kx)-1)sin kx)/(x^(2))=4`
`rArr lim_(x to 0) (e^(kx)-1)/(x)lim_(x to 0)(sinkx)/(x)=4`
`rArr k*lim_(x to 0)(e^(kx)-1)/(kx)*k lim_(x to 0)(sin kx)/(kx)=4`
`rArr k^(2)=4`
`rArr k =pm 2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

Match the following : {:("Column I ", " Column II" ), ("(A)" if lim_(x to 1) (1-x) tan""(pix)/2 = k " then " sin (1/k) " is" , "(p)"4),( "(B)" if lim_(x to 5) (x^(k)-5^(k))/(x-5) = 500 " then k is " , "(q)" 1),("(C)" lim_(x to oo)(1 + 4/(x+1))^((3x-1)/3) " is equal to " e^(k) " , then k is" , "(r) A perfect sqare"), ("(D) " d^(20)/(dx^(20)) (2 cos x"," cos 3x)= 2^(4k) [ cos2x + 2^(20) . cos4k]" then k is " , "(s)" 5),(, "(t)An odd number"):}

Let f(x)=((e^(kx)-1)*sin Kx)/(x^(2)) for x!=0;=4, for x=0 is continuous at x=0 then k

Knowledge Check

  • Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

    A
    `5/3`
    B
    `1/3`
    C
    `2/3`
    D
    `8/3`
  • lim_(x to 0) (1+ sin x)^(1//x^(2)) is equal to:

    A
    0
    B
    `infty`
    C
    `e^(1//2)`
    D
    does not exist
  • If f(x)=(sin(e^(x-2)-1))/(In(x-1)) then lim_(xto2)(x) is equal to ?

    A
    `-2`
    B
    `-1`
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

    Find lim_(x rarr0)(1-cos kx)/(x^(2)),(k!=0)

    lim_(x to oo)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

    If sum_(r =1)^(k) cos^(-1)beta r=(k pi)/2 for any k ge 1 and A = sum_(e =1)^(k) [betar)^( r) , then lim_(x to A) ((1+x^(2))^(1//3) - (1-2x)^(1//4))/(x+x^(2)) is equal to:

    If lim_(x rarr 1) (x^(4)-1)/(x -1) = lim_(x rarr k) (x^(3)-k^(3))/(x^(2)-k^(2)) then the value of k is