Home
Class 12
MATHS
The Sum sum(K=1)^(20) K1/(2^(K)) is equa...

The Sum `sum_(K=1)^(20) K1/(2^(K))` is equal to.

A

`2-3/2^(17)`

B

`1-(11)/2^(20)`

C

`2-(11)/(2^(19)`

D

`2-(21)/2^(20)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the summation \( S = \sum_{k=1}^{20} \frac{k}{2^k} \), we can follow these steps: ### Step 1: Write the summation explicitly We start with the expression for \( S \): \[ S = \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \ldots + \frac{20}{2^{20}} \] ### Step 2: Multiply the summation by \( \frac{1}{2} \) Now, we multiply the entire summation \( S \) by \( \frac{1}{2} \): \[ \frac{S}{2} = \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \ldots + \frac{20}{2^{21}} \] ### Step 3: Subtract the two equations Next, we subtract \( \frac{S}{2} \) from \( S \): \[ S - \frac{S}{2} = S \left(1 - \frac{1}{2}\right) = \frac{S}{2} \] This gives us: \[ S - \frac{S}{2} = \left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots + \frac{1}{2^{20}}\right) - \left(\frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \ldots + \frac{20}{2^{21}}\right) \] ### Step 4: Simplify the left side The left side simplifies to: \[ \frac{S}{2} = \frac{1}{2} + \left(\frac{2}{2^2} - \frac{1}{2^2}\right) + \left(\frac{3}{2^3} - \frac{2}{2^3}\right) + \ldots + \left(\frac{20}{2^{20}} - \frac{19}{2^{20}}\right) - \frac{20}{2^{21}} \] This results in: \[ \frac{S}{2} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots + \frac{1}{2^{20}} - \frac{20}{2^{21}} \] ### Step 5: Calculate the sum of the geometric series The series \( \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots + \frac{1}{2^{20}} \) is a geometric series with first term \( a = \frac{1}{2} \) and common ratio \( r = \frac{1}{2} \). The sum of the first \( n \) terms of a geometric series is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] For our series: \[ S = \frac{1/2 \left(1 - (1/2)^{20}\right)}{1 - 1/2} = 1 - \frac{1}{2^{20}} \] ### Step 6: Substitute back to find \( S \) Now we substitute this back into our equation: \[ \frac{S}{2} = \left(1 - \frac{1}{2^{20}}\right) - \frac{20}{2^{21}} \] This simplifies to: \[ \frac{S}{2} = 1 - \frac{1 + 20}{2^{20}} = 1 - \frac{21}{2^{20}} \] ### Step 7: Solve for \( S \) Multiply both sides by 2: \[ S = 2 - \frac{42}{2^{20}} = 2 - \frac{21}{2^{19}} \] ### Final Answer Thus, the final value of the summation is: \[ S = 2 - \frac{21}{2^{19}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos

Similar Questions

Explore conceptually related problems

The sum sum_(k=1)^(n)k(k^(2)+k+1) is equal to

sum_(k=0)^(20)(.^(20)C_(k))^(2) is equal to

Knowledge Check

  • The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

    A
    `2 - (11)/(2^(19))`
    B
    `1 - (11)/(2^(20))`
    C
    `2 - (3)/(2^(17))`
    D
    `2 - (21)/(2^(20))`
  • sum_(x-1)^(20)k(1)/(2^(k)) is equal to

    A
    `2-(11)/(2^(19))`
    B
    `1-(11)/(2^(20))`
    C
    `2+(11)/(2^(19))`
    D
    `1+(11)/(2^(20))`
  • For any integer n ge 1 , the sum sum_(i=1)^(n) k (k + 2) is equal to

    A
    `(n (n + 1) (2n + 1))/(6)`
    B
    `(n(n + 1) (n + 2))/(6)`
    C
    `(n (n + 1)(2n + 7))/(6)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The sum sum_(k=1)^(100)(k)/(k^(4)+k^(2)+1) is equal to

    sum_(k=1)^(3n)6nC_(2k-1)(-3)^(k) is equal to

    If sum_(k=1)^n ɸ(k)=2_n/(n+1),then sum_(k=1)^10 1/(ɸ(k)) is equal to

    Let S_(k) , be the sum of an infinite geometric series whose first term is kand common ratio is (k)/(k+1)(kgt0) . Then the value of sum_(k=1)^(oo)(-1)^(k)/(S_(k)) is equal to

    For any integer n ge 1, sum_(k=1)^(n)k(k+2) is equal to