Home
Class 12
MATHS
If y = sin^(-1) ((2x)/(1 + x^(2))), "the...

If `y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) ` is equal to

A

`(1)/(1 + x^(2))`

B

`(2)/(1 + x^(2))`

C

`(2)/(1 - x^(2))`

D

`(-2)/(1 + x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \), we will use implicit differentiation and the chain rule. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \] 2. **Differentiate both sides with respect to \( x \)**: Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \cdot \frac{d}{dx} \left( \frac{2x}{1 + x^2} \right) \] 3. **Differentiate \( \frac{2x}{1 + x^2} \)**: We will use the quotient rule here. If \( u = 2x \) and \( v = 1 + x^2 \), then: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( \frac{du}{dx} = 2 \) and \( \frac{dv}{dx} = 2x \). Thus: \[ \frac{d}{dx} \left( \frac{2x}{1 + x^2} \right) = \frac{(1 + x^2)(2) - (2x)(2x)}{(1 + x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1 + x^2)^2} = \frac{2 - 2x^2}{(1 + x^2)^2} = \frac{2(1 - x^2)}{(1 + x^2)^2} \] 4. **Substitute back into the derivative**: Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} \] 5. **Simplify the expression**: We need to simplify \( 1 - \left( \frac{2x}{1 + x^2} \right)^2 \): \[ 1 - \left( \frac{2x}{1 + x^2} \right)^2 = 1 - \frac{4x^2}{(1 + x^2)^2} = \frac{(1 + x^2)^2 - 4x^2}{(1 + x^2)^2} = \frac{1 + 2x^2 + x^4 - 4x^2}{(1 + x^2)^2} = \frac{1 - 2x^2 + x^4}{(1 + x^2)^2} = \frac{(1 - x^2)^2}{(1 + x^2)^2} \] Therefore: \[ \sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2} = \frac{1 - x^2}{1 + x^2} \] 6. **Final expression for \( \frac{dy}{dx} \)**: Now substituting this back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\frac{1 - x^2}{1 + x^2}} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} = \frac{1 + x^2}{1 - x^2} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{2(1 + x^2)}{(1 + x^2)^2} = \frac{2}{1 + x^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{2}{1 + x^2} \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \), we will use implicit differentiation and the chain rule. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)((2x)/(1+x^(2))) then (dy)/(dx) at x=-2 is

If y=sin^(-1)((4x)/(1+4x^(2))) , then what is (dy)/(dx) equal to?

If y=sin^(-1)((4x)/(1+4x^(2))) then what is (dy)/(dx) equal to ?

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If sin (xy) + (x)/(y) =x^(2) - y , " then " (dy)/(dx) is equal to

If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |