Home
Class 12
MATHS
If y = sin^(-1) ((2x)/(1 + x^(2))), "the...

If `y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) ` is equal to

A

`(1)/(1 + x^(2))`

B

`(2)/(1 + x^(2))`

C

`(2)/(1 - x^(2))`

D

`(-2)/(1 + x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \), we will use implicit differentiation and the chain rule. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \] 2. **Differentiate both sides with respect to \( x \)**: Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \cdot \frac{d}{dx} \left( \frac{2x}{1 + x^2} \right) \] 3. **Differentiate \( \frac{2x}{1 + x^2} \)**: We will use the quotient rule here. If \( u = 2x \) and \( v = 1 + x^2 \), then: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( \frac{du}{dx} = 2 \) and \( \frac{dv}{dx} = 2x \). Thus: \[ \frac{d}{dx} \left( \frac{2x}{1 + x^2} \right) = \frac{(1 + x^2)(2) - (2x)(2x)}{(1 + x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1 + x^2)^2} = \frac{2 - 2x^2}{(1 + x^2)^2} = \frac{2(1 - x^2)}{(1 + x^2)^2} \] 4. **Substitute back into the derivative**: Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} \] 5. **Simplify the expression**: We need to simplify \( 1 - \left( \frac{2x}{1 + x^2} \right)^2 \): \[ 1 - \left( \frac{2x}{1 + x^2} \right)^2 = 1 - \frac{4x^2}{(1 + x^2)^2} = \frac{(1 + x^2)^2 - 4x^2}{(1 + x^2)^2} = \frac{1 + 2x^2 + x^4 - 4x^2}{(1 + x^2)^2} = \frac{1 - 2x^2 + x^4}{(1 + x^2)^2} = \frac{(1 - x^2)^2}{(1 + x^2)^2} \] Therefore: \[ \sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2} = \frac{1 - x^2}{1 + x^2} \] 6. **Final expression for \( \frac{dy}{dx} \)**: Now substituting this back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\frac{1 - x^2}{1 + x^2}} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} = \frac{1 + x^2}{1 - x^2} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{2(1 + x^2)}{(1 + x^2)^2} = \frac{2}{1 + x^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{2}{1 + x^2} \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \), we will use implicit differentiation and the chain rule. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)((2x)/(1+x^(2))) then (dy)/(dx) at x=-2 is

If y=sin^(-1)((5x+12sqrt(1-x^(2)))/(13)) , then (dy)/(dx) is equal to:

Knowledge Check

  • If y=sin^(-1)((4x)/(1+4x^(2))) , then what is (dy)/(dx) equal to?

    A
    `(1)/(1+4x^(2))`
    B
    `-(1)/(1+4x^(2))`
    C
    `(4)/(1+4x^(2))`
    D
    `(4x)/(1+4x^(2))`
  • If y=sin^(-1)((4x)/(1+4x^(2))) then what is (dy)/(dx) equal to ?

    A
    A) `(1)/(1+4x^(2))`
    B
    B) `-(1)/(1+4x^(2))`
    C
    C) `(4)/(1+4x^(2))`
    D
    D) `(4x)/(1+4x^(2))`
  • If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

    A
    tanx
    B
    cosec x
    C
    cos x
    D
    sec x
  • Similar Questions

    Explore conceptually related problems

    If y=sin^(-1)""(5x+12sqrt(1-x^(2)))/(13) then (dy)/(dx) is equal to

    If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

    If sin (xy) + (x)/(y) =x^(2) - y , " then " (dy)/(dx) is equal to

    If y=(sin x)/(1 + cos x) , then (dy)/(dx) is equal to

    If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to