Home
Class 12
MATHS
If y = x^sqrt(x) , "then "(dy)/(dx) is ...

If ` y = x^sqrt(x) , "then "(dy)/(dx)` is equal to

A

`(y)/(sqrt(x)) (2 + log x)`

B

`(y)/(2 sqrt(x)) (2 + log x)`

C

`(y)/(sqrt(x)) (2 - log x)`

D

`(y)/(2sqrt(x)) (2 - log x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = x^{\sqrt{x}} \) and we need to find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides to simplify the differentiation process: \[ \ln y = \ln(x^{\sqrt{x}}) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \( \ln(a^b) = b \ln a \), we can rewrite the equation: \[ \ln y = \sqrt{x} \cdot \ln x \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \( x \). Using implicit differentiation on the left side and the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\sqrt{x} \ln x) \] ### Step 4: Apply the product rule The right side involves the product of \( \sqrt{x} \) and \( \ln x \). Using the product rule \( (u \cdot v)' = u'v + uv' \): - Let \( u = \sqrt{x} \) and \( v = \ln x \). - Then \( u' = \frac{1}{2\sqrt{x}} \) and \( v' = \frac{1}{x} \). Applying the product rule: \[ \frac{d}{dx}(\sqrt{x} \ln x) = \left(\frac{1}{2\sqrt{x}} \cdot \ln x\right) + \left(\sqrt{x} \cdot \frac{1}{x}\right) \] This simplifies to: \[ \frac{1}{2\sqrt{x}} \ln x + \frac{1}{\sqrt{x}} \] ### Step 5: Substitute back into the equation Now we substitute back into our differentiated equation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \ln x + \frac{1}{\sqrt{x}} \] ### Step 6: Solve for \( \frac{dy}{dx} \) To isolate \( \frac{dy}{dx} \), we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left( \frac{1}{2\sqrt{x}} \ln x + \frac{1}{\sqrt{x}} \right) \] ### Step 7: Substitute \( y \) back Since \( y = x^{\sqrt{x}} \), we substitute back: \[ \frac{dy}{dx} = x^{\sqrt{x}} \left( \frac{1}{2\sqrt{x}} \ln x + \frac{1}{\sqrt{x}} \right) \] ### Step 8: Combine terms Factoring out \( \frac{1}{\sqrt{x}} \): \[ \frac{dy}{dx} = x^{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} \left( \frac{1}{2} \ln x + 1 \right) \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{x^{\sqrt{x}}}{\sqrt{x}} \left( \frac{1}{2} \ln x + 1 \right) \]

To solve the problem where \( y = x^{\sqrt{x}} \) and we need to find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides to simplify the differentiation process: \[ \ln y = \ln(x^{\sqrt{x}}) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y = sqrt(sinx+y) , then (dy)/(dx) is equal to

If x=e^(x/y), then (dy)/(dx) is equal to

Knowledge Check

  • Given y = sqrta^sqrt(x), "then" (dy)/(dx) is equal to

    A
    `(y)/(2) ( sqrta^sqrt(x)log a)/(4y sqrt(x))`
    B
    `(y)/(2)`
    C
    ` ( sqrta^sqrt(x)log a)/(4y sqrt(x))`
    D
    `s^(sqrt(x)) log a `
  • If y^(x) = x^(y) , "then" (dy)/(dx) is equal to

    A
    `(y)/(x) ((y + x logy)/(x - y logx))`
    B
    `(y)/(x) ((y - x logy)/(x - y logx))`
    C
    `(y)/(x) ((y + x logy)/(x + y logx))`
    D
    None of these
  • If y= sqrt(x)^(x) ,then (dy)/(dx)

    A
    ` (sqrt(x) ^(x))/( 2) (1+log x )`
    B
    ` (sqrt(x)^(x))/( 2) (x+log x ) `
    C
    ` sqrtx^(x) (1+logx)`
    D
    ` sqrtx^(x) (x+log x )`
  • Similar Questions

    Explore conceptually related problems

    If y=sqrt(x)^(sqrt(x))-oo then (dy)/(dx) is equal to

    If y = sqrt(sin + y ) "then" (dy)/(dx) is equal to

    if y = e^(sqrt(x)) , then (dy)/(dx) equals

    If y= log (sqrt(x - 1)) - sqrt(x + 1)) , "then " (dy)/(dx) is equal to

    If y = sqrt(x sin x) " then "(dy)/(dx) = ?