Home
Class 12
MATHS
What is the value of sin(A+B)sin(A-B)+s...

What is the value of `sin(A+B)sin(A-B)+sin(B+C)sin(B-C)+sin(C+A)sin(C-A)`?

A

0

B

`sinA+sinB+sinC`

C

`cosA+cosB+cosC`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \sin(A+B)\sin(A-B) + \sin(B+C)\sin(B-C) + \sin(C+A)\sin(C-A) \), we can use the product-to-sum identities in trigonometry. ### Step-by-Step Solution: 1. **Apply the Product-to-Sum Identity**: The product-to-sum identity states that: \[ \sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)] \] We will apply this identity to each term in the expression. 2. **First Term**: For \( \sin(A+B)\sin(A-B) \): \[ \sin(A+B)\sin(A-B) = \frac{1}{2} [\cos((A+B)-(A-B)) - \cos((A+B)+(A-B))] \] Simplifying this gives: \[ = \frac{1}{2} [\cos(2B) - \cos(2A)] \] 3. **Second Term**: For \( \sin(B+C)\sin(B-C) \): \[ \sin(B+C)\sin(B-C) = \frac{1}{2} [\cos((B+C)-(B-C)) - \cos((B+C)+(B-C))] \] Simplifying this gives: \[ = \frac{1}{2} [\cos(2C) - \cos(2B)] \] 4. **Third Term**: For \( \sin(C+A)\sin(C-A) \): \[ \sin(C+A)\sin(C-A) = \frac{1}{2} [\cos((C+A)-(C-A)) - \cos((C+A)+(C-A))] \] Simplifying this gives: \[ = \frac{1}{2} [\cos(2A) - \cos(2C)] \] 5. **Combine All Terms**: Now, we combine all three results: \[ \sin(A+B)\sin(A-B) + \sin(B+C)\sin(B-C) + \sin(C+A)\sin(C-A) \] becomes: \[ = \frac{1}{2} [\cos(2B) - \cos(2A)] + \frac{1}{2} [\cos(2C) - \cos(2B)] + \frac{1}{2} [\cos(2A) - \cos(2C)] \] 6. **Simplifying the Expression**: Combine the terms: \[ = \frac{1}{2} \left( \cos(2B) - \cos(2A) + \cos(2C) - \cos(2B) + \cos(2A) - \cos(2C) \right) \] Notice that \( \cos(2B) \) cancels out, \( \cos(2A) \) cancels out, and \( \cos(2C) \) cancels out: \[ = \frac{1}{2} (0) = 0 \] ### Final Result: Thus, the value of the expression is: \[ \boxed{0} \]

To find the value of the expression \( \sin(A+B)\sin(A-B) + \sin(B+C)\sin(B-C) + \sin(C+A)\sin(C-A) \), we can use the product-to-sum identities in trigonometry. ### Step-by-Step Solution: 1. **Apply the Product-to-Sum Identity**: The product-to-sum identity states that: \[ \sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STATISTICS

    NDA PREVIOUS YEARS|Exercise MCQs|204 Videos
  • VECTORS

    NDA PREVIOUS YEARS|Exercise MATH|199 Videos

Similar Questions

Explore conceptually related problems

19.Prove that sin (A + B) sin (AB) + sin (B + C) sin (BC) + sin (C + A) sin (CA) = 0

What is the value of sin (B - C) cos (A- D) + sin (A-B) cos (C -D) + sin (C- A) cos (B - D) ? sin (B - C) cos (A- D) + sin (A-B) cos (C -D) + sin (C- A) cos (B - D) का मान क्या है?

What is the value of cos(90 -B)sin (C-A) + sin(90 + A) cos(B+ C)- sin (90 - C) cos (A + B) ? cos(90 -B)sin (C-A) + sin(90 + A) cos(B+ C)- sin (90 - C) cos (A + B) का मान क्या है?

If cos(A+B+C)=cos A cos B cos C, then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin2sin2C)

sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

Show that: sin A sin(B-C)+sin B sin(C-A)+sin C sin(A-B)=0

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))