Home
Class 12
MATHS
Let vec(a), vec(b), vec(c) be non-coplan...

Let `vec(a), vec(b), vec(c)` be non-coplanar vectors and `vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)])`.
What is the value of
`(vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r)` ?

A

`0`

B

`-3`

C

`3`

D

`-9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot \vec{p} + (\vec{b} - \vec{c} - \vec{a}) \cdot \vec{q} + (\vec{c} - \vec{a} - \vec{b}) \cdot \vec{r} \] where \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]} \] ### Step 1: Substitute the values of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) Substituting the values of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) into the expression gives: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot \left(\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}\right) + (\vec{b} - \vec{c} - \vec{a}) \cdot \left(\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}\right) + (\vec{c} - \vec{a} - \vec{b}) \cdot \left(\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}\right) \] ### Step 2: Factor out the common denominator The common denominator is \([\vec{a} \vec{b} \vec{c}]\), so we can factor it out: \[ \frac{1}{[\vec{a} \vec{b} \vec{c}]} \left[ (\vec{a} - \vec{b} - \vec{c}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} - \vec{c} - \vec{a}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} - \vec{a} - \vec{b}) \cdot (\vec{a} \times \vec{b}) \right] \] ### Step 3: Evaluate each dot product 1. **First term**: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \cdot (\vec{b} \times \vec{c}) - \vec{c} \cdot (\vec{b} \times \vec{c}) \] The second and third terms are zero because the dot product of a vector with a cross product of itself and another vector is zero. Thus, this simplifies to: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a} \vec{b} \vec{c}] \] 2. **Second term**: \[ (\vec{b} - \vec{c} - \vec{a}) \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) - \vec{c} \cdot (\vec{c} \times \vec{a}) - \vec{a} \cdot (\vec{c} \times \vec{a}) \] Again, the second and third terms are zero, so this simplifies to: \[ \vec{b} \cdot (\vec{c} \times \vec{a}) = [\vec{a} \vec{b} \vec{c}] \] 3. **Third term**: \[ (\vec{c} - \vec{a} - \vec{b}) \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) - \vec{a} \cdot (\vec{a} \times \vec{b}) - \vec{b} \cdot (\vec{a} \times \vec{b}) \] The second and third terms are zero, so this simplifies to: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = [\vec{a} \vec{b} \vec{c}] \] ### Step 4: Combine the results Now we can combine all the results: \[ [\vec{a} \vec{b} \vec{c}] + [\vec{a} \vec{b} \vec{c}] + [\vec{a} \vec{b} \vec{c}] = 3[\vec{a} \vec{b} \vec{c}] \] ### Step 5: Final expression Putting it all together, we have: \[ \frac{3[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]} = 3 \] Thus, the final value is: \[ \boxed{3} \]

To solve the problem, we need to evaluate the expression: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot \vec{p} + (\vec{b} - \vec{c} - \vec{a}) \cdot \vec{q} + (\vec{c} - \vec{a} - \vec{b}) \cdot \vec{r} \] where ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

Let vec a, vec b, vec c be three vectors from vec a xx (vec b xxvec c) = (vec a xxvec b) xxvec c, if

Knowledge Check

  • (vec(a).(vec(b)xxvec(c)))/(vec(b).(vec(c)xxvec(a)))+(vec(b).(vec(a)xxvec(b)))/(vec(a).(vec(b)xxvec(c))) is equal to

    A
    1
    B
    2
    C
    0
    D
    `oo`
  • If vectors vec(a),vec(b),vec(c) are non-coplanar, then ([vec(a)+2vec(b).vec(b)+2vec(c).vec(c)+2vec(a)])/([vec(a).vec(b).vec(c)])=

    A
    3
    B
    9
    C
    8
    D
    6
  • Let vec(a),vec(b) and vec(c ) be three non-coplaner vectors and vec(p),vec(q),vec(r) be three vectors such that vec(p)=2vec(a)-vec(b)+vec(c ),vec(q)=vec(a)-3vec(b)+2vec(c),vec(r)=vec(a)+vec(b)-vec(c ) . If [vec(a)vec(b)vec(c)]=2 then [vec(p)vec(q)vec( r)] equals

    A
    6
    B
    -6
    C
    3
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If vec a, vec b, vec c are three non-coplanar vectors and vec p, vec q, vec r are vectors defined by the relations vec p = (vec b xxvec c) / ([vec avec bvec c]), vec q = (vec c xxvec a) / ([vec avec bvec c]), vec r = (vec a xxvec b) / ([vec avec bvec c]) then the value of expression (vec a + vec b) * vec p + (vec b + vec c) * vec q + (vec c + vec a) * vec r is equal to

    If vec a,vec b, and vec c are three non-coplanar vectors,then find the value of (vec a*(vec b xxvec c))/(vec b*(vec c xxvec a))+(vec b*(vec c xxvec a))/(vec c*(vec a xxvec b))+(vec c*(vec b xxvec a))/(vec a xxvec c))

    If vec a,vec b, and vec c are three non-coplanar non-zero vecrtors,then prove that (vec a*vec a)vec b xxvec c+(vec a*vec b)vec c xxvec a+(vec a*vec c)vec a xxvec b=[vec bvec cvec a]vec a

    The lines vec(r)=vec(a)+lambda(vec(b)xxvec(c))&vec(r)=vec(b)+mu(vec(c)xxvec(a)) will intersect, if

    vec a, vec b, vec c are non-coplanar vectors, express vec a xx (vec b xxvec c) as a linear combination of vec a, vec b, vec c