Home
Class 12
MATHS
Let vec(a), vec(b), vec(c) be non-coplan...

Let `vec(a), vec(b), vec(c)` be non-coplanar vectors and `vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)])`.
What is the value of
`(vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r)` ?

A

`0`

B

`-3`

C

`3`

D

`-9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot \vec{p} + (\vec{b} - \vec{c} - \vec{a}) \cdot \vec{q} + (\vec{c} - \vec{a} - \vec{b}) \cdot \vec{r} \] where \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]} \] ### Step 1: Substitute the values of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) Substituting the values of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) into the expression gives: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot \left(\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}\right) + (\vec{b} - \vec{c} - \vec{a}) \cdot \left(\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}\right) + (\vec{c} - \vec{a} - \vec{b}) \cdot \left(\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}\right) \] ### Step 2: Factor out the common denominator The common denominator is \([\vec{a} \vec{b} \vec{c}]\), so we can factor it out: \[ \frac{1}{[\vec{a} \vec{b} \vec{c}]} \left[ (\vec{a} - \vec{b} - \vec{c}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} - \vec{c} - \vec{a}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} - \vec{a} - \vec{b}) \cdot (\vec{a} \times \vec{b}) \right] \] ### Step 3: Evaluate each dot product 1. **First term**: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \cdot (\vec{b} \times \vec{c}) - \vec{c} \cdot (\vec{b} \times \vec{c}) \] The second and third terms are zero because the dot product of a vector with a cross product of itself and another vector is zero. Thus, this simplifies to: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a} \vec{b} \vec{c}] \] 2. **Second term**: \[ (\vec{b} - \vec{c} - \vec{a}) \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) - \vec{c} \cdot (\vec{c} \times \vec{a}) - \vec{a} \cdot (\vec{c} \times \vec{a}) \] Again, the second and third terms are zero, so this simplifies to: \[ \vec{b} \cdot (\vec{c} \times \vec{a}) = [\vec{a} \vec{b} \vec{c}] \] 3. **Third term**: \[ (\vec{c} - \vec{a} - \vec{b}) \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) - \vec{a} \cdot (\vec{a} \times \vec{b}) - \vec{b} \cdot (\vec{a} \times \vec{b}) \] The second and third terms are zero, so this simplifies to: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = [\vec{a} \vec{b} \vec{c}] \] ### Step 4: Combine the results Now we can combine all the results: \[ [\vec{a} \vec{b} \vec{c}] + [\vec{a} \vec{b} \vec{c}] + [\vec{a} \vec{b} \vec{c}] = 3[\vec{a} \vec{b} \vec{c}] \] ### Step 5: Final expression Putting it all together, we have: \[ \frac{3[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]} = 3 \] Thus, the final value is: \[ \boxed{3} \]

To solve the problem, we need to evaluate the expression: \[ (\vec{a} - \vec{b} - \vec{c}) \cdot \vec{p} + (\vec{b} - \vec{c} - \vec{a}) \cdot \vec{q} + (\vec{c} - \vec{a} - \vec{b}) \cdot \vec{r} \] where ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

Let vec a, vec b, vec c be three vectors from vec a xx (vec b xxvec c) = (vec a xxvec b) xxvec c, if

If vec a, vec b, vec c are three non-coplanar vectors and vec p, vec q, vec r are vectors defined by the relations vec p = (vec b xxvec c) / ([vec avec bvec c]), vec q = (vec c xxvec a) / ([vec avec bvec c]), vec r = (vec a xxvec b) / ([vec avec bvec c]) then the value of expression (vec a + vec b) * vec p + (vec b + vec c) * vec q + (vec c + vec a) * vec r is equal to

If vec a,vec b, and vec c are three non-coplanar vectors,then find the value of (vec a*(vec b xxvec c))/(vec b*(vec c xxvec a))+(vec b*(vec c xxvec a))/(vec c*(vec a xxvec b))+(vec c*(vec b xxvec a))/(vec a xxvec c))

If vec a,vec b, and vec c are three non-coplanar non-zero vecrtors,then prove that (vec a*vec a)vec b xxvec c+(vec a*vec b)vec c xxvec a+(vec a*vec c)vec a xxvec b=[vec bvec cvec a]vec a

vec a, vec b, vec c are non-coplanar vectors, express vec a xx (vec b xxvec c) as a linear combination of vec a, vec b, vec c

NDA PREVIOUS YEARS-VECTORS -MATH
  1. Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)x...

    Text Solution

    |

  2. If vec(a), vec(b), vec(c) are the position vectors of corners A, B, C ...

    Text Solution

    |

  3. In a DeltaABC, angle B is obtuse and D, E, F are the middle points of ...

    Text Solution

    |

  4. If vec(p)!= vec(0) and the conditions vec(p).vec(q)=vec(p).vec(r) and ...

    Text Solution

    |

  5. If two unit vectors vec(p) and vec(q) make an angle (pi)/(3) with each...

    Text Solution

    |

  6. What are the values of x for which the two vectors (x^(2)-1)hat(i)+(x+...

    Text Solution

    |

  7. Find the moment about the point hat i+ 2hat j+ 3hat k of a force repr...

    Text Solution

    |

  8. A particle is acted upon by following forces: (i) 2hat(i)+3hat(j)+ha...

    Text Solution

    |

  9. What is the vector whose magnitude is 3, and is perpendicular to hat(i...

    Text Solution

    |

  10. If alpha , beta, gamma be angles which the vector vec(r)=lambda vec(i)...

    Text Solution

    |

  11. The following question consist of two statement, one labelled as the '...

    Text Solution

    |

  12. OAB is a given triangle such that vec(OA)=vec(a), vec(OB)=vec(b). Also...

    Text Solution

    |

  13. Let A B C D be a p[arallelogram whose diagonals intersect at P and ...

    Text Solution

    |

  14. If vec r1, vec r2, vec r3 are the position vectors off thee collinear...

    Text Solution

    |

  15. Let alpha be the angle which the vector vec(V)=2hat(i)-hat(j)+2hat(k) ...

    Text Solution

    |

  16. If vec(m),vec(n),vec(r) are three vectors, theta is the angle between ...

    Text Solution

    |

  17. If the vectors hat(i)-2 x hat(j)-3yhat(k) and hat(i)+3xhat(j)+2yhat(k)...

    Text Solution

    |

  18. If the components of vec(b) along and perpendicular to vec(a) are lamb...

    Text Solution

    |

  19. A force mhat(i) - 3hat(j) + hat(k) acts on a point and so the point mo...

    Text Solution

    |

  20. For any two vectors vec(a) and vec(b) consider the following statement...

    Text Solution

    |