Home
Class 12
MATHS
Let [.]denote the greatest integer func...

Let [.]denote the greatest integer function, then the value of `int_(0)^(1.5) x[x^(2)]dx`, is

A

`(3)/(2)`

B

`(3)/(4)`

C

`(5)/(4)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1.5} x \lfloor x^2 \rfloor \, dx \), we need to analyze the behavior of the greatest integer function \( \lfloor x^2 \rfloor \) over the interval from 0 to 1.5. ### Step 1: Determine the intervals for \( \lfloor x^2 \rfloor \) 1. **For \( 0 \leq x < 1 \)**: - \( x^2 \) ranges from \( 0 \) to \( 1 \). - Therefore, \( \lfloor x^2 \rfloor = 0 \). 2. **For \( 1 \leq x < \sqrt{2} \)**: - \( x^2 \) ranges from \( 1 \) to \( 2 \). - Therefore, \( \lfloor x^2 \rfloor = 1 \). 3. **For \( \sqrt{2} \leq x < 1.5 \)**: - \( x^2 \) ranges from \( 2 \) to \( 2.25 \). - Therefore, \( \lfloor x^2 \rfloor = 2 \). ### Step 2: Break the integral into parts We can break the integral into three parts based on the intervals determined above: \[ \int_{0}^{1.5} x \lfloor x^2 \rfloor \, dx = \int_{0}^{1} x \cdot 0 \, dx + \int_{1}^{\sqrt{2}} x \cdot 1 \, dx + \int_{\sqrt{2}}^{1.5} x \cdot 2 \, dx \] ### Step 3: Calculate each integral 1. **First integral**: \[ \int_{0}^{1} x \cdot 0 \, dx = 0 \] 2. **Second integral**: \[ \int_{1}^{\sqrt{2}} x \cdot 1 \, dx = \int_{1}^{\sqrt{2}} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{\sqrt{2}} = \frac{(\sqrt{2})^2}{2} - \frac{1^2}{2} = \frac{2}{2} - \frac{1}{2} = 1 - 0.5 = 0.5 \] 3. **Third integral**: \[ \int_{\sqrt{2}}^{1.5} x \cdot 2 \, dx = 2 \int_{\sqrt{2}}^{1.5} x \, dx = 2 \left[ \frac{x^2}{2} \right]_{\sqrt{2}}^{1.5} = \left[ x^2 \right]_{\sqrt{2}}^{1.5} = (1.5)^2 - (\sqrt{2})^2 = 2.25 - 2 = 0.25 \] ### Step 4: Combine the results Now, we can combine the results of the three integrals: \[ \int_{0}^{1.5} x \lfloor x^2 \rfloor \, dx = 0 + 0.5 + 0.25 = 0.75 \] ### Final Answer Thus, the value of the integral \( \int_{0}^{1.5} x \lfloor x^2 \rfloor \, dx \) is \( \frac{3}{4} \) or \( 0.75 \).

To solve the integral \( \int_{0}^{1.5} x \lfloor x^2 \rfloor \, dx \), we need to analyze the behavior of the greatest integer function \( \lfloor x^2 \rfloor \) over the interval from 0 to 1.5. ### Step 1: Determine the intervals for \( \lfloor x^2 \rfloor \) 1. **For \( 0 \leq x < 1 \)**: - \( x^2 \) ranges from \( 0 \) to \( 1 \). - Therefore, \( \lfloor x^2 \rfloor = 0 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let [1 denote the greatest integet function then the value int_(0)^(1.5)x[x^(2)].dx

Consider f(x)={: {(x|x|,,x = 1):} Where [.] denotes the greatest integer function then the value of int_(-2)^(2)f(x)dx, is

Knowledge Check

  • If [.] denotes the greatest integer function, then int_(0)^(oo) [2e^(-x)]dx=

    A
    0
    B
    `e^(2)`
    C
    `2//e`
    D
    log 2
  • If [x] denotes the greatest integer function then int_(0.5)^(4.5) [x] dx+ int_(-1)^(1) |x| dx is equal to

    A
    9
    B
    8
    C
    7
    D
    6
  • If [*] denots the greatest integer function then the value of the integeral int_(-pi//2)^(pi//2)([(x)/(pi)]+0.5) dx , is

    A
    `pi`
    B
    `pi//2`
    C
    0
    D
    `-pi//2`
  • Similar Questions

    Explore conceptually related problems

    If [:] denotes the greatest integer function, then find the value of int_(1)^(2)[3x]dx

    If [dot] denotes the greatest integer function, then find the value of int_1^2[3x]dx

    Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):} [.] denotes the greatest integer function, then int_(-2)^(4) dx is equal to

    Let [x] denote the greatest integer less than or equal to x. Then the value of int_(1)^(2)|2x-[3x]|dx is ______

    Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?