Home
Class 12
MATHS
int(0)^(10)|x(x-1)(x-2)|dx is equal to...

`int_(0)^(10)|x(x-1)(x-2)|dx` is equal to

A

`160.05`

B

`1600.5`

C

`16.005`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `f(x)= (x-1)(x-2)`. The signs of f(x) for differenta values of x are as shown belown

`{:(-x(x-1)(x-2)=(-x^(3)-3x^(2)+2x)"," ,"if" x lt 0),(x(x-1)(x-2)=x^(3)-3x^(2)+2x"," , "if" 0 le x lt 1),(-x(x-1)(x-2)=-(x^(3)-3x^(2)+2x)"," , " if" 1 le x lt 2),(x(x-1)(x-2)=x^(3)-3x^(2)+2x",", "if" x gt 2):}`
`therefore underset(0)overset(10)int|x(x-1)(x-2)|dx`
`rArr I = overset (1) underset (0 ) ( int) |x(x-1 ) (x - 2 ) | dx + overset (2 ) underset (1) (int) |x(x- 1 ) (x - 2 )| dx `
`rArr I = overset (1) underset (0) int (x ^(3) - 3x ^(2) + 2x ) dx + overset (2)underset (1) int - (x ^(3) - 3x ^(2) + 2 x ) dx + overset (10) underset (2) int (x ^(3) - 3x ^(2) + 2x ) dx `
`rArr I = [ (x ^(4))/( 4) - x ^(3) + x ^(2) ]_(0) ^(1) - [ (x ^(4)) /( 4 ) - x ^(3) + x ^(2) ] _(1) ^(2) + [ (x ^(4))/( 4) - x ^(3)+ x ^(2)] _(2) ^(10)`
` rArr I = (1)/(2) + 1600 = 1600.5`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

Knowledge Check

  • int_(0)^(5) 1/((x-1)(x-2))dx is equal to

    A
    ` log. 27/32`
    B
    `log. 32/27`
    C
    ` log. 8/9`
    D
    ` log. 3/4`
  • The value of int_(0)^(1)x^(2)e^(x)dx is equal to

    A
    `e-2`
    B
    `e+2`
    C
    `e^(2)-2`
    D
    `e^(2)`
  • If {x} denotes the fractional part of x, then int_(0)^(x)({x}-(1)/(2)) dx is equal to

    A
    `(1)/(2){x}({x}+1)`
    B
    `(1)/(2){x}({x}-1)`
    C
    `{x}({x}-1)`
    D
    `{x}({x}+1)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

    int_(0)^(1)(1-x^(7))^(2)dx is equal to

    The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

    int_(5)^(10) ""(1)/((x-1)(x-2))dx is equal to

    int_(0)^(2) |x^(2)+2x-3|dx is equal to