Home
Class 12
MATHS
int(-3pi//2)^(-pi//2){(x+pi)^(3)+cos^(2)...

`int_(-3pi//2)^(-pi//2){(x+pi)^(3)+cos^(2)(x+3pi)}dx`, is

A

`(pi^(4))/(32)`

B

`(pi^(4))/(32)+(pi)/(2)`

C

`(pi)/(2)`

D

`(pi)/(4)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} \left( (x + \pi)^3 + \cos^2(x + 3\pi) \right) dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = x + \pi \). Then, \( dx = dt \). We also need to change the limits of integration: - When \( x = -\frac{3\pi}{2} \), \( t = -\frac{3\pi}{2} + \pi = -\frac{\pi}{2} \). - When \( x = -\frac{\pi}{2} \), \( t = -\frac{\pi}{2} + \pi = \frac{\pi}{2} \). Thus, the integral becomes: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( t^3 + \cos^2(t + 2\pi) \right) dt. \] ### Step 2: Simplifying the Cosine Term Using the periodicity of cosine, we have: \[ \cos(t + 2\pi) = \cos(t). \] So, we can rewrite the integral as: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( t^3 + \cos^2(t) \right) dt. \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^3 dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(t) dt. \] ### Step 4: Evaluate the First Integral The first integral, \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^3 dt \), is an odd function over a symmetric interval about zero. Therefore, it evaluates to zero: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^3 dt = 0. \] ### Step 5: Evaluate the Second Integral For the second integral, we can use the identity \( \cos^2(t) = \frac{1 + \cos(2t)}{2} \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(t) dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} dt = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dt + \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2t) dt. \] The first integral evaluates to: \[ \frac{1}{2} \left[ t \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{2} \left( \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) \right) = \frac{1}{2} \cdot \pi = \frac{\pi}{2}. \] The second integral, \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2t) dt \), also evaluates to zero because \( \cos(2t) \) is an even function over a symmetric interval about zero. ### Step 6: Combine Results Combining the results from both integrals, we have: \[ 0 + \frac{\pi}{2} = \frac{\pi}{2}. \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} \left( (x + \pi)^3 + \cos^2(x + 3\pi) \right) dx = \frac{\pi}{2}. \]

To solve the integral \[ \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} \left( (x + \pi)^3 + \cos^2(x + 3\pi) \right) dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int _(-3pi//2)^(-pi//2) [ ( x + pi)^(3) + cos^(2) x ] dx is equalt to

int_(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1 (B) pi^4/32 (C) pi^4/32+pi/2 (D) pi/2

Evaluate: int_(-(3 pi)/(2))^(-(pi)/(2))[(x+pi)^(3)+cos^(2)(x+3 pi)]dx

int_(-pi//2)^(pi//2)cos^(6)x dx=

The value of int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx is

The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

int_(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. int(-3pi//2)^(-pi//2){(x+pi)^(3)+cos^(2)(x+3pi)}dx, is

    Text Solution

    |

  2. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  4. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  5. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  6. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  7. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  8. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  9. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  10. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  11. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  12. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  13. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  14. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  16. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  17. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  19. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  20. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  21. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |