Home
Class 12
MATHS
int(-3pi//2)^(-pi//2){(x+pi)^(3)+cos^(2)...

`int_(-3pi//2)^(-pi//2){(x+pi)^(3)+cos^(2)(x+3pi)}dx`, is

A

`(pi^(4))/(32)`

B

`(pi^(4))/(32)+(pi)/(2)`

C

`(pi)/(2)`

D

`(pi)/(4)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} \left( (x + \pi)^3 + \cos^2(x + 3\pi) \right) dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = x + \pi \). Then, \( dx = dt \). We also need to change the limits of integration: - When \( x = -\frac{3\pi}{2} \), \( t = -\frac{3\pi}{2} + \pi = -\frac{\pi}{2} \). - When \( x = -\frac{\pi}{2} \), \( t = -\frac{\pi}{2} + \pi = \frac{\pi}{2} \). Thus, the integral becomes: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( t^3 + \cos^2(t + 2\pi) \right) dt. \] ### Step 2: Simplifying the Cosine Term Using the periodicity of cosine, we have: \[ \cos(t + 2\pi) = \cos(t). \] So, we can rewrite the integral as: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( t^3 + \cos^2(t) \right) dt. \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^3 dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(t) dt. \] ### Step 4: Evaluate the First Integral The first integral, \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^3 dt \), is an odd function over a symmetric interval about zero. Therefore, it evaluates to zero: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^3 dt = 0. \] ### Step 5: Evaluate the Second Integral For the second integral, we can use the identity \( \cos^2(t) = \frac{1 + \cos(2t)}{2} \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(t) dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} dt = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dt + \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2t) dt. \] The first integral evaluates to: \[ \frac{1}{2} \left[ t \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{2} \left( \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) \right) = \frac{1}{2} \cdot \pi = \frac{\pi}{2}. \] The second integral, \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2t) dt \), also evaluates to zero because \( \cos(2t) \) is an even function over a symmetric interval about zero. ### Step 6: Combine Results Combining the results from both integrals, we have: \[ 0 + \frac{\pi}{2} = \frac{\pi}{2}. \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} \left( (x + \pi)^3 + \cos^2(x + 3\pi) \right) dx = \frac{\pi}{2}. \]

To solve the integral \[ \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} \left( (x + \pi)^3 + \cos^2(x + 3\pi) \right) dx, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-3pi//2)^(pi//2) [(x+pi)^(2) + cos^(2) (x+ 3pi)] dx =

int_(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1 (B) pi^4/32 (C) pi^4/32+pi/2 (D) pi/2

Knowledge Check

  • int _(-3pi//2)^(-pi//2) [ ( x + pi)^(3) + cos^(2) x ] dx is equalt to

    A
    `((pi^(4))/32)+(pi/2)`
    B
    ` (pi/2)`
    C
    ` (pi/4)-1`
    D
    ` (pi^(4))/32`
  • int_(-pi//2)^(pi//2)cos^(6)x dx=

    A
    `(16)/(5)`
    B
    `(5)/(16)`
    C
    `(5pi)/(16)`
    D
    `(16pi)/(5)`
  • The value of int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx is

    A
    0
    B
    2
    C
    `pi`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int_(-(3 pi)/(2))^(-(pi)/(2))[(x+pi)^(3)+cos^(2)(x+3 pi)]dx

    The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

    The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

    int_(-pi//2)^(pi//2) sin^(2) x cos^(2) x (sin x +cos x) dx =

    int_(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=