Home
Class 12
MATHS
If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(...

If `int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx`, then the value of k, is

A

1

B

n

C

`n//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given and find the value of \( k \) such that: \[ \int_{0}^{n\pi} f(\cos^2 x) \, dx = k \int_{0}^{\pi} f(\cos^2 x) \, dx \] ### Step 1: Identify the Period of the Function The function \( \cos^2 x \) has a period of \( \pi \). This means that the integral over any interval of length \( \pi \) will yield the same result. **Hint:** Remember that the period of a function helps in breaking down the integral over larger intervals. ### Step 2: Break Down the Integral We can express the integral from \( 0 \) to \( n\pi \) as a sum of integrals over intervals of length \( \pi \): \[ \int_{0}^{n\pi} f(\cos^2 x) \, dx = \int_{0}^{\pi} f(\cos^2 x) \, dx + \int_{\pi}^{2\pi} f(\cos^2 x) \, dx + \ldots + \int_{(n-1)\pi}^{n\pi} f(\cos^2 x) \, dx \] Since \( \cos^2 x \) is periodic with period \( \pi \), each of these integrals is equal to \( \int_{0}^{\pi} f(\cos^2 x) \, dx \). **Hint:** Use the periodicity of the function to simplify the integral over multiple periods. ### Step 3: Count the Number of Intervals There are \( n \) intervals of length \( \pi \) in the range from \( 0 \) to \( n\pi \). Therefore, we can write: \[ \int_{0}^{n\pi} f(\cos^2 x) \, dx = n \int_{0}^{\pi} f(\cos^2 x) \, dx \] **Hint:** The number of complete periods in the interval gives you a multiplier for the integral over one period. ### Step 4: Set Up the Equation Now, we can set this equal to the expression given in the problem: \[ n \int_{0}^{\pi} f(\cos^2 x) \, dx = k \int_{0}^{\pi} f(\cos^2 x) \, dx \] **Hint:** Equating both sides allows you to isolate \( k \). ### Step 5: Solve for \( k \) Assuming \( \int_{0}^{\pi} f(\cos^2 x) \, dx \) is not zero, we can divide both sides by \( \int_{0}^{\pi} f(\cos^2 x) \, dx \): \[ k = n \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{n} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(n pi)f(cos^(2)x)dx=k int_(0)^( pi)f(c0s^(2)x)dx, then find the value k

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

Knowledge Check

  • If P = int_(0)^(3pi) f(cos^(2)x)dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then

    A
    `P-Q=0`
    B
    `P- 2Q=0`
    C
    `P-3 Q =0`
    D
    `P- 5Q =0`
  • If int_(0)^(pi) x f(sin x)dx= k int_(0)^(pi//2) f(sin x) dx then the value of k is

    A
    2
    B
    1
    C
    `pi`
    D
    0
  • If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

    A
    `pi`
    B
    `(pi)/(3)`
    C
    `2pi`
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    If l_(1)=int_(0)^(npi)f(|cosx|)dx and l_(2)=int_(0)^(5pi)f(|cosx|)dx , then

    int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

    If P=int_0^(3pi)f(cos^2x)dx and Q=int_0^pi(cos^2x)dx then

    If for a continuous function f, int_(-a)^(a) f(x)dx = K int_(0)^(a) (f(x) + f(-x) ) dx then the value of K is

    If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then