Home
Class 12
MATHS
int(-pi//2)^(pi//2) sin^(2)x cos^(2) x(s...

`int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin x+cos x)dx=`

A

`2//15`

B

`4//15`

C

`2//15`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx, \] we will analyze the integrand to determine if it is an odd or even function. ### Step 1: Identify the function The integrand is \[ f(x) = \sin^2 x \cos^2 x (\sin x + \cos x). \] ### Step 2: Check for odd/even function To check if \( f(x) \) is odd, we need to compute \( f(-x) \): \[ f(-x) = \sin^2(-x) \cos^2(-x) (\sin(-x) + \cos(-x). \] Using the properties of sine and cosine, we have: - \( \sin(-x) = -\sin x \) - \( \cos(-x) = \cos x \) Substituting these into \( f(-x) \): \[ f(-x) = \sin^2 x \cos^2 x (-\sin x + \cos x). \] ### Step 3: Simplify \( f(-x) \) Now, simplify \( f(-x) \): \[ f(-x) = \sin^2 x \cos^2 x (-\sin x + \cos x) = -\sin^2 x \cos^2 x (\sin x - \cos x). \] ### Step 4: Compare \( f(-x) \) and \( f(x) \) Now we compare \( f(-x) \) with \( f(x) \): \[ f(-x) \neq f(x) \quad \text{and} \quad f(-x) = -f(x). \] This shows that \( f(x) \) is an odd function. ### Step 5: Use the property of integrals Since \( f(x) \) is odd, we can use the property of definite integrals: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{for odd functions}. \] Thus, \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = 0. \] ### Conclusion The value of the integral is \[ \boxed{0}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//2) (sin x -cos x)/(1+sin x cos x) dx=?

Knowledge Check

  • int_(-pi//2)^(pi//2) x sin x cos x dx=

    A
    0
    B
    `(pi)/(2)`
    C
    `(pi)/(4)`
    D
    2
  • int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

    A
    0
    B
    `int_(0)^(pi//2)sin^(2)x.cos^(2)x dx`
    C
    `4 int_(0)^(pi//2)sin^(2)x.cos^(2)x dx`
    D
    1
  • int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x + cos^(4)x)dx=

    A
    2
    B
    `(pi)/(4)`
    C
    `-2`
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    int_(-pi/2)^(pi/2)(a cos^(2)x+b sin^(2)x)dx

    int_(0)^(pi/2)(sin^(2)x*cos x)dx=

    int_(0)^(pi//2)(a sin x + b cos x)/(sin x + cos x) dx=

    int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

    int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=