Home
Class 12
MATHS
The value of integral int(-pi)^(pi) (cos...

The value of integral `int_(-pi)^(pi) (cos ax-sin b x)^(2)dx`, where (a and b are integers), is

A

`-pi`

B

0

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\pi}^{\pi} (\cos(ax) - \sin(bx))^2 \, dx \), we can follow these steps: ### Step 1: Expand the integrand First, we expand the expression inside the integral: \[ I = \int_{-\pi}^{\pi} (\cos(ax) - \sin(bx))^2 \, dx = \int_{-\pi}^{\pi} (\cos^2(ax) - 2\cos(ax)\sin(bx) + \sin^2(bx)) \, dx \] ### Step 2: Separate the integral We can separate the integral into three parts: \[ I = \int_{-\pi}^{\pi} \cos^2(ax) \, dx - 2 \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx + \int_{-\pi}^{\pi} \sin^2(bx) \, dx \] ### Step 3: Evaluate each integral 1. **Evaluate \( \int_{-\pi}^{\pi} \cos^2(ax) \, dx \)**: Using the identity \( \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \): \[ \int_{-\pi}^{\pi} \cos^2(ax) \, dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2ax)}{2} \, dx = \frac{1}{2} \left( \int_{-\pi}^{\pi} 1 \, dx + \int_{-\pi}^{\pi} \cos(2ax) \, dx \right) \] The first integral evaluates to \( 2\pi \) and the second integral evaluates to \( 0 \) (since \( \cos(2ax) \) is an even function over a symmetric interval): \[ \int_{-\pi}^{\pi} \cos^2(ax) \, dx = \frac{1}{2} (2\pi + 0) = \pi \] 2. **Evaluate \( -2 \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx \)**: The integral \( \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx \) evaluates to \( 0 \) (since \( \cos(ax)\sin(bx) \) is an odd function): \[ -2 \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx = -2 \cdot 0 = 0 \] 3. **Evaluate \( \int_{-\pi}^{\pi} \sin^2(bx) \, dx \)**: Using the identity \( \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \): \[ \int_{-\pi}^{\pi} \sin^2(bx) \, dx = \int_{-\pi}^{\pi} \frac{1 - \cos(2bx)}{2} \, dx = \frac{1}{2} \left( \int_{-\pi}^{\pi} 1 \, dx - \int_{-\pi}^{\pi} \cos(2bx) \, dx \right) \] Similar to before, the first integral evaluates to \( 2\pi \) and the second integral evaluates to \( 0 \): \[ \int_{-\pi}^{\pi} \sin^2(bx) \, dx = \frac{1}{2} (2\pi - 0) = \pi \] ### Step 4: Combine the results Now we combine the results from each part: \[ I = \pi + 0 + \pi = 2\pi \] ### Final Answer Thus, the value of the integral is: \[ \boxed{2\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-pi)^( pi)(cos ax-sin bx)^(2)dx

The value of integral int_(0)^( pi)xf(sin x)dx=

int_(-pi)^(pi) [cos px-sin qx]^(2) dx where p,q are integers is equal to

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi)x log sin x dx is

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

Value of the integral int _(-pi//2)^(pi//2) cos x dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  2. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  3. The value of integral int(-pi)^(pi) (cos ax-sin b x)^(2)dx, where (a a...

    Text Solution

    |

  4. The value of the definite integral int(0)^(1)(1+e^(-x^(2))) dx is

    Text Solution

    |

  5. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  6. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  7. If I(1)=int(0)^(x) e^("zx "e^(-z^(2)))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  8. int(0)^(1//2) |sin pi s|dx is equal to

    Text Solution

    |

  9. The function F(x)=int(0)^(x) log((1-x)/(1+x))dx, is

    Text Solution

    |

  10. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  11. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  12. If F(x)and g(x) are two integralable functions defined on [a,b], the...

    Text Solution

    |

  13. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  14. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  15. The value of int(-1)^(1) x|x|dx, is

    Text Solution

    |

  16. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  17. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  18. Assuming that f is everywhere continuous, (1)/(c )int(ac)^(bc)f((x)/(c...

    Text Solution

    |

  19. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  20. If f(x)=ae^(2x)+be^(x)+c x satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |