Home
Class 12
MATHS
The value of integral int(-pi)^(pi) (cos...

The value of integral `int_(-pi)^(pi) (cos ax-sin b x)^(2)dx`, where (a and b are integers), is

A

`-pi`

B

0

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\pi}^{\pi} (\cos(ax) - \sin(bx))^2 \, dx \), we can follow these steps: ### Step 1: Expand the integrand First, we expand the expression inside the integral: \[ I = \int_{-\pi}^{\pi} (\cos(ax) - \sin(bx))^2 \, dx = \int_{-\pi}^{\pi} (\cos^2(ax) - 2\cos(ax)\sin(bx) + \sin^2(bx)) \, dx \] ### Step 2: Separate the integral We can separate the integral into three parts: \[ I = \int_{-\pi}^{\pi} \cos^2(ax) \, dx - 2 \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx + \int_{-\pi}^{\pi} \sin^2(bx) \, dx \] ### Step 3: Evaluate each integral 1. **Evaluate \( \int_{-\pi}^{\pi} \cos^2(ax) \, dx \)**: Using the identity \( \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \): \[ \int_{-\pi}^{\pi} \cos^2(ax) \, dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2ax)}{2} \, dx = \frac{1}{2} \left( \int_{-\pi}^{\pi} 1 \, dx + \int_{-\pi}^{\pi} \cos(2ax) \, dx \right) \] The first integral evaluates to \( 2\pi \) and the second integral evaluates to \( 0 \) (since \( \cos(2ax) \) is an even function over a symmetric interval): \[ \int_{-\pi}^{\pi} \cos^2(ax) \, dx = \frac{1}{2} (2\pi + 0) = \pi \] 2. **Evaluate \( -2 \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx \)**: The integral \( \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx \) evaluates to \( 0 \) (since \( \cos(ax)\sin(bx) \) is an odd function): \[ -2 \int_{-\pi}^{\pi} \cos(ax)\sin(bx) \, dx = -2 \cdot 0 = 0 \] 3. **Evaluate \( \int_{-\pi}^{\pi} \sin^2(bx) \, dx \)**: Using the identity \( \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \): \[ \int_{-\pi}^{\pi} \sin^2(bx) \, dx = \int_{-\pi}^{\pi} \frac{1 - \cos(2bx)}{2} \, dx = \frac{1}{2} \left( \int_{-\pi}^{\pi} 1 \, dx - \int_{-\pi}^{\pi} \cos(2bx) \, dx \right) \] Similar to before, the first integral evaluates to \( 2\pi \) and the second integral evaluates to \( 0 \): \[ \int_{-\pi}^{\pi} \sin^2(bx) \, dx = \frac{1}{2} (2\pi - 0) = \pi \] ### Step 4: Combine the results Now we combine the results from each part: \[ I = \pi + 0 + \pi = 2\pi \] ### Final Answer Thus, the value of the integral is: \[ \boxed{2\pi} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-pi)^( pi)(cos ax-sin bx)^(2)dx

The value of integral int_(0)^( pi)xf(sin x)dx=

Knowledge Check

  • int_(-pi)^(x) (cos ax- sin bx)^(2)dx where a and b are integers, is equal to

    A
    `-pi`
    B
    0
    C
    `pi`
    D
    `2pi`
  • int_(-pi)^(pi) [cos px-sin qx]^(2) dx where p,q are integers is equal to

    A
    `-pi`
    B
    0
    C
    `pi`
    D
    `2pi`
  • The value of the integral int_(0)^(pi)x log sin x dx is

    A
    `(pi)/(2) log 2`
    B
    `(pi^(2))/(2) log 2`
    C
    `-(pi^(2))/(2)` log 2`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of the integral int_(0)^(pi) | sin 2x| dx is

    The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

    The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

    The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

    Value of the integral int _(-pi//2)^(pi//2) cos x dx is