A
B
C
D
Text Solution
AI Generated Solution
The correct Answer is:
Topper's Solved these Questions
DEFINITE INTEGRALS
OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 VideosDEFINITE INTEGRALS
OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 VideosDEFINITE INTEGRALS
OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 VideosCONTINUITY AND DIFFERENTIABILITY
OBJECTIVE RD SHARMA|Exercise Exercise|86 VideosDERIVATIVE AS A RATE MEASURER
OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos
Similar Questions
Explore conceptually related problems
OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
- The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...
Text Solution
|
- int(0)^(1) |sin 2pi x|dx id equal to
Text Solution
|
- The value of integral int(-pi)^(pi) (cos ax-sin b x)^(2)dx, where (a a...
Text Solution
|
- The value of the definite integral int(0)^(1)(1+e^(-x^(2))) dx is
Text Solution
|
- If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals
Text Solution
|
- If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...
Text Solution
|
- If I(1)=int(0)^(x) e^("zx "e^(-z^(2)))dz and I(2)=int(0)^(x) e^(-z^(2)...
Text Solution
|
- int(0)^(1//2) |sin pi s|dx is equal to
Text Solution
|
- The function F(x)=int(0)^(x) log((1-x)/(1+x))dx, is
Text Solution
|
- int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to
Text Solution
|
- If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals
Text Solution
|
- If F(x)and g(x) are two integralable functions defined on [a,b], the...
Text Solution
|
- If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then
Text Solution
|
- If I=int(0)^(1) (dx)/(1+x^(4)), then
Text Solution
|
- The value of int(-1)^(1) x|x|dx, is
Text Solution
|
- If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...
Text Solution
|
- The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is
Text Solution
|
- Assuming that f is everywhere continuous, (1)/(c )int(ac)^(bc)f((x)/(c...
Text Solution
|
- (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to
Text Solution
|
- If f(x)=ae^(2x)+be^(x)+c x satisfies the conditions f(0)=-1, f'(log 2)...
Text Solution
|