Home
Class 12
MATHS
The value of int(0)^(2pi) |cos x -sin x|...

The value of `int_(0)^(2pi) |cos x -sin x|dx`is

A

`(4)/(sqrt(2))`

B

`2sqrt(2)`

C

`(2)/(sqrt(2))`

D

`4sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} |\cos x - \sin x| \, dx \), we need to determine where the expression inside the modulus changes sign. ### Step 1: Find the points where \( \cos x = \sin x \) We start by solving the equation \( \cos x = \sin x \). This occurs when: \[ \tan x = 1 \implies x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] Within the interval \( [0, 2\pi] \), the points where \( \cos x = \sin x \) are: - \( x = \frac{\pi}{4} \) - \( x = \frac{5\pi}{4} \) ### Step 2: Determine the sign of \( \cos x - \sin x \) in each interval We will evaluate the sign of \( \cos x - \sin x \) in the intervals \( [0, \frac{\pi}{4}] \), \( [\frac{\pi}{4}, \frac{5\pi}{4}] \), and \( [\frac{5\pi}{4}, 2\pi] \). 1. **Interval \( [0, \frac{\pi}{4}] \)**: - Choose \( x = 0 \): \( \cos(0) - \sin(0) = 1 - 0 = 1 > 0 \) (positive) - Thus, \( |\cos x - \sin x| = \cos x - \sin x \) 2. **Interval \( [\frac{\pi}{4}, \frac{5\pi}{4}] \)**: - Choose \( x = \pi \): \( \cos(\pi) - \sin(\pi) = -1 - 0 = -1 < 0 \) (negative) - Thus, \( |\cos x - \sin x| = -(\cos x - \sin x) = \sin x - \cos x \) 3. **Interval \( [\frac{5\pi}{4}, 2\pi] \)**: - Choose \( x = \frac{3\pi}{2} \): \( \cos(\frac{3\pi}{2}) - \sin(\frac{3\pi}{2}) = 0 - (-1) = 1 > 0 \) (positive) - Thus, \( |\cos x - \sin x| = \cos x - \sin x \) ### Step 3: Set up the integral with the determined expressions Now we can write the integral as: \[ I = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) \, dx + \int_{\frac{5\pi}{4}}^{2\pi} (\cos x - \sin x) \, dx \] ### Step 4: Evaluate each integral 1. **First Integral**: \[ \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx = \left[ \sin x + \cos x \right]_{0}^{\frac{\pi}{4}} = \left( \sin\frac{\pi}{4} + \cos\frac{\pi}{4} \right) - (0 + 1) = \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - 1 = \sqrt{2} - 1 \] 2. **Second Integral**: \[ \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) \, dx = \left[ -\cos x - \sin x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = \left( -\cos\frac{5\pi}{4} - \sin\frac{5\pi}{4} \right) - \left( -\cos\frac{\pi}{4} - \sin\frac{\pi}{4} \right) \] \[ = \left( -(-\frac{1}{\sqrt{2}}) - (-\frac{1}{\sqrt{2}}) \right) - \left( -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - \left( -\frac{2}{\sqrt{2}} \right) = \sqrt{2} + \sqrt{2} = 2\sqrt{2} \] 3. **Third Integral**: \[ \int_{\frac{5\pi}{4}}^{2\pi} (\cos x - \sin x) \, dx = \left[ \sin x + \cos x \right]_{\frac{5\pi}{4}}^{2\pi} = \left( \sin(2\pi) + \cos(2\pi) \right) - \left( \sin\frac{5\pi}{4} + \cos\frac{5\pi}{4} \right) \] \[ = (0 + 1) - \left( -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = 1 - (-\sqrt{2}) = 1 + \sqrt{2} \] ### Step 5: Combine all parts Now we combine all the results: \[ I = (\sqrt{2} - 1) + (2\sqrt{2}) + (1 + \sqrt{2}) = \sqrt{2} - 1 + 2\sqrt{2} + 1 + \sqrt{2} = 4\sqrt{2} \] Thus, the value of the integral is: \[ \boxed{4\sqrt{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2 pi)|cos x-sin x|dx is

int_(0)^( pi/2)|cos x-sin x|dx

Knowledge Check

  • The value of int_(0)^(pi//2) |sin x-cos x|dx is

    A
    0
    B
    `2 (sqrt2-1)`
    C
    `2 sqrt2`
    D
    `2(sqrt2+1)`
  • The value of int _(0)^(pi//2) ((sin x + cos x)^(2))/(sqrt(1+sin 2x) dx is

    A
    0
    B
    1
    C
    2
    D
    3
  • The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

    A
    `(pi^(2))/(2)`
    B
    `(pi^(2))/(4)`
    C
    `(pi^(2))/(8)`
    D
    `(pi^(2))/(16)`
  • Similar Questions

    Explore conceptually related problems

    int_ (0) ^ (2 pi) | cos x-sin x | dx =

    If int_(0)^( pi)e^(sin x)dx=p. Then value of int_(0)^((pi)/(2))x cos xe^(sin x)dx is (A) (pi)/(2)e-p(B)(pi)/(2)e-2p (C) (pi)/(2)e-(p)/(2)(D)p

    int_(0)^( pi)cos2x*log(sin x)dx

    The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

    The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is