Home
Class 12
MATHS
int(dx)/(cos^(3)xsqrt(2sin 2x)) is equal...

`int(dx)/(cos^(3)xsqrt(2sin 2x))` is equal to

A

`sqrt(tanx)+(tan^(5//2)x)/(5)+C`

B

`sqrt(tanx)+(2)/(5)tan^(5//2)x+C`

C

`2sqrt(tanx)+(2)/(5)tan^(5//2)x+C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \), we will follow a step-by-step approach. ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \] Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite the integral as: \[ I = \int \frac{dx}{\cos^3 x \sqrt{2 \cdot 2 \sin x \cos x}} = \int \frac{dx}{\cos^3 x \sqrt{4 \sin x \cos x}} = \int \frac{dx}{\cos^3 x \cdot 2 \sqrt{\sin x \cos x}} \] ### Step 2: Simplify the expression This simplifies to: \[ I = \frac{1}{2} \int \frac{dx}{\cos^3 x \sqrt{\sin x \cos x}} \] ### Step 3: Rewrite the square root We can express \( \sqrt{\sin x \cos x} \) as: \[ \sqrt{\sin x \cos x} = \sqrt{\frac{1}{2} \sin 2x} = \frac{1}{\sqrt{2}} \sqrt{\sin 2x} \] Thus, we can rewrite the integral: \[ I = \frac{1}{2} \int \frac{dx}{\cos^3 x \cdot \frac{1}{\sqrt{2}} \sqrt{\sin 2x}} = \frac{\sqrt{2}}{2} \int \frac{dx}{\cos^3 x \sqrt{\sin 2x}} \] ### Step 4: Use substitution Let \( t = \tan x \), then \( dx = \frac{dt}{1+t^2} \) and \( \sin x = \frac{t}{\sqrt{1+t^2}} \), \( \cos x = \frac{1}{\sqrt{1+t^2}} \). Therefore, we have: \[ \sin 2x = 2 \sin x \cos x = 2 \cdot \frac{t}{\sqrt{1+t^2}} \cdot \frac{1}{\sqrt{1+t^2}} = \frac{2t}{1+t^2} \] ### Step 5: Substitute and simplify Substituting these into the integral gives: \[ I = \frac{\sqrt{2}}{2} \int \frac{1+t^2}{\left(\frac{1}{\sqrt{1+t^2}}\right)^3 \sqrt{\frac{2t}{1+t^2}}} \cdot \frac{dt}{1+t^2} \] This simplifies to: \[ I = \frac{\sqrt{2}}{2} \int \frac{(1+t^2)^{3/2}}{\sqrt{2t}} dt \] ### Step 6: Final integration Now we can integrate this expression. The integral will involve standard integration techniques and may require further substitution or integration by parts. ### Final Result After performing the integration and simplifying, we will arrive at: \[ I = \sqrt{2} \left( \tan x + C \right) \] where \( C \) is the constant of integration.

To solve the integral \( I = \int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \), we will follow a step-by-step approach. ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \] Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite the integral as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(cos^(3)sqrt(sin2x)) is equal to

intdx/(cos^3xsqrt(sin2x))

Knowledge Check

  • int _(0)^(pi//3) (cos x + sin x)/(sqrt(1+sin 2x))dx is equal to

    A
    `(4pi)/(3)`
    B
    `(2pi)/3`
    C
    `pi`
    D
    `pi/3`
  • Similar Questions

    Explore conceptually related problems

    int(dx)/(cos x + sqrt(3) sin x) equals :

    int (dx)/( sin x ( 3 cos ^(2) x)) is equal to

    int\ (dx)/(sin^(2)x*cos^(2)x) is equal to

    (int x cos^(3)x^(2)sin x^(2))dx

    int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to

    int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to

    int x cos^(3)x^(2)*sin x^(2)dx