Home
Class 12
MATHS
int(1)/(sqrt(8+2x-x^(2)))dx is equal to...

`int(1)/(sqrt(8+2x-x^(2)))dx` is equal to

A

`(1)/(3)sin^(-1)((x-1)/(3))+c`

B

`sin^(-1)((x+1)/(3))+c`

C

`(1)/(3)sin^(-1)((x+1)/(3))+c`

D

`sin^(-1)((x-1)/(3))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{8 + 2x - x^2}} \, dx \), we can follow these steps: ### Step 1: Rewrite the expression under the square root We start by rewriting the expression inside the square root: \[ 8 + 2x - x^2 = -(x^2 - 2x - 8) \] Now, we can complete the square for the quadratic expression \( - (x^2 - 2x - 8) \). ### Step 2: Completing the square To complete the square for \( x^2 - 2x - 8 \): \[ x^2 - 2x = (x - 1)^2 - 1 \] Thus, \[ x^2 - 2x - 8 = (x - 1)^2 - 9 \] So, \[ 8 + 2x - x^2 = -((x - 1)^2 - 9) = 9 - (x - 1)^2 \] ### Step 3: Substitute back into the integral Now we can rewrite the integral: \[ \int \frac{1}{\sqrt{9 - (x - 1)^2}} \, dx \] ### Step 4: Use the standard integral formula We recognize that the integral \( \int \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1} \left( \frac{u}{a} \right) + C \). Here, \( a = 3 \) and \( u = x - 1 \). ### Step 5: Apply the formula Thus, we can apply the formula: \[ \int \frac{1}{\sqrt{9 - (x - 1)^2}} \, dx = \sin^{-1} \left( \frac{x - 1}{3} \right) + C \] ### Final Answer The final answer for the integral is: \[ \int \frac{1}{\sqrt{8 + 2x - x^2}} \, dx = \sin^{-1} \left( \frac{x - 1}{3} \right) + C \]

To solve the integral \( \int \frac{1}{\sqrt{8 + 2x - x^2}} \, dx \), we can follow these steps: ### Step 1: Rewrite the expression under the square root We start by rewriting the expression inside the square root: \[ 8 + 2x - x^2 = -(x^2 - 2x - 8) \] Now, we can complete the square for the quadratic expression \( - (x^2 - 2x - 8) \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(4+8x-5x^(2)))dx

int(dx)/(sqrt(8+2x-x^(2)))

Knowledge Check

  • int(1)/(sqrt(9x-4x^(2)))dx is equal to

    A
    `(1)/(9)sin^(-1)((9x-8)/(8))+C`
    B
    `(1)/(2)sin^(-1)((8x-9)/(9))+C`
    C
    `(1)/(3)sin^(-1)((9x-8)/(8))+C`
    D
    `(1)/(2)sin^(-1)((9x-8)/(9))+C`
  • int1/sqrt(8+2x-x^(2))dx=

    A
    `1/3sin^(-1)((x-1)/3)+c`
    B
    `sin^(-1)((x+1)/3)+c`
    C
    `1/3sin^(-1)((x+1)/3)+c`
    D
    `sin^(-1)((x-1)/3)+c`
  • The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

    A
    `sec^(-1)(x-1)+c`
    B
    `sec^(-1)(2x-1)+c`
    C
    `tan^(-1)x+c`
    D
    `tan^(-1)(2x-1)+c`
  • Similar Questions

    Explore conceptually related problems

    The integral int(dx)/(sqrt(2-3x-x^(2))) is equal to

    int(dx)/(sqrt(x-x^(2))) is equal to

    int(1)/(sqrt((8)/(3)x-x^(2)))dx

    int(dx)/(sqrt(8-4x-2x^(2)))

    int_(-1)^(1)(x)/(sqrt(1-x^(2)))*sin^(-1)(2x sqrt(1-x^(2)))dx is equal to