Home
Class 12
MATHS
int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x...

`int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx` is equal to

A

`x+C`

B

`(3)/(2)sin2x+C`

C

`-(3)/(2)cos 2x+C`

D

`(1)/(3)sin 3x -cos 3x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sin^6 x + \cos^6 x + 3 \sin^2 x \cos^2 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite \( \sin^6 x + \cos^6 x \) using the identity for the sum of cubes: \[ \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 = (\sin^2 x + \cos^2 x)((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^6 x + \cos^6 x = 1 \cdot \left((\sin^2 x)^2 + (\cos^2 x)^2 - \sin^2 x \cos^2 x\right) \] ### Step 2: Simplify the expression Now, we know that: \[ (\sin^2 x)^2 + (\cos^2 x)^2 = (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x = 1 - 2 \sin^2 x \cos^2 x \] Thus, we can rewrite: \[ \sin^6 x + \cos^6 x = (1 - 2 \sin^2 x \cos^2 x) - \sin^2 x \cos^2 x = 1 - 3 \sin^2 x \cos^2 x \] ### Step 3: Substitute back into the integral Now substituting back into the integral, we have: \[ \int (1 - 3 \sin^2 x \cos^2 x + 3 \sin^2 x \cos^2 x) \, dx = \int (1) \, dx \] ### Step 4: Integrate The integral simplifies to: \[ \int 1 \, dx = x + C \] ### Final Answer Thus, the solution to the integral is: \[ \int (\sin^6 x + \cos^6 x + 3 \sin^2 x \cos^2 x) \, dx = x + C \]

To solve the integral \( \int (\sin^6 x + \cos^6 x + 3 \sin^2 x \cos^2 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite \( \sin^6 x + \cos^6 x \) using the identity for the sum of cubes: \[ \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 = (\sin^2 x + \cos^2 x)((\sin^2 x)^2 - \sin^2 x \cos^2 x + (\cos^2 x)^2) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx

Knowledge Check

  • int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

    A
    `tan x + cot x + C`
    B
    `tan x + cosec x + C`
    C
    `-tan x + cot x + C`
    D
    `tan x + sec x + C`
  • int(1)/(sin^(2)x.cos^(2)x)dx is equal to

    A
    `sinx - cos x +C`
    B
    `tanx +cot x+C`
    C
    `cos x +sinx +C`
    D
    `tanx -cot x +C`
  • int (sin^6x+cos^6x+3 sin^2x cos^2 x)dx is equal to

    A
    x+c
    B
    `3/2 "sin"2x+C`
    C
    `-3/2 "cos2x+C`
    D
    `1/3"sin"3x-cos 3x+C`
  • Similar Questions

    Explore conceptually related problems

    The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

    int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx

    int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx

    Evaluate int (sin^(6) x + cos^(6)x)/(sin^(2)x cos^(2)x) dx

    int 1/(sin^2x cos^2x )dx is equal to: