Home
Class 12
PHYSICS
A charged particle of mass 5 mg and char...

A charged particle of mass 5 mg and charge `q= +2 mu C` has velocity `vec v = 2 hat i - 3 hat j + 4 hat k.` Find out the magnetic force on the charged particle and its acceleration at this instant due to magnetic field `vec B = 3 hat j - 2 hat k. vec v and vec B` are in `ms^-1 and Wbm^-2` , respectively.

Text Solution

Verified by Experts

`vecF=qvecvxxvecB=2xx10^-6(2hati-3hatj+4hatk)xx(3hatj-2hatk)`
`=2xx10^-6[-6hati+4hatj+6hatk]N`
By Newton's law of motion,
`veca=(vecF)/m=(2xx10^-6)/(5xx10^-6)(-6hati+4hatj+6hatk)`
`=0.8(-3hati+2hatj+3hatk) ms^-2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MAGNETIC FIELD AND MAGNETIC FORCES

    CENGAGE PHYSICS|Exercise Exercise 1.2|13 Videos
  • MAGNETIC FIELD AND MAGNETIC FORCES

    CENGAGE PHYSICS|Exercise Exercise1.3|14 Videos
  • MAGNETIC FIELD AND MAGNETIC FORCES

    CENGAGE PHYSICS|Exercise Solved Example|25 Videos
  • KINETIC THEORY

    CENGAGE PHYSICS|Exercise Question Bank|31 Videos
  • Magnetism and Matter

    CENGAGE PHYSICS|Exercise Question Bank|50 Videos

Similar Questions

Explore conceptually related problems

A charged particle has acceleration vec a = 2 hat i + x hat j in a megnetic field vec B = - 3 hat i + 2 hat j - 4 hat k. Find the value of x.

An alpha particle moving with the velocity vec v = u hat i + hat j ,in a uniform magnetic field vec B = B hat k . Magnetic force on alpha particle is

Knowledge Check

  • A charged particle moves with velocity vec v = a hat i + d hat j in a magnetic field vec B = A hat i + D hat j. The force acting on the particle has magnitude F. Then,

    A
    `F=0, if aD=dA`.
    B
    `F=0, if aD=-dA`.
    C
    `F=0, if aA=-dD`.
    D
    `fprop (a^2+b^2)^(1//2)xx(A^2+D^2)^(1//2)`
  • A charge q moves with a velocity 2 ms^(-1) along x-axis in a uniform magnetic field vec B = (hat i + 2 hat j + 3 hat k ) then charge will experience a force

    A
    in zy plane
    B
    along -y axis
    C
    aling +z axis
    D
    along-zaxis
  • A charged particle of specific charge (charge/mass) alpha released from origin at time t=0 with velocity vec v = v_0 (hat i + hat j) in uniform magnetic field vec B = B_0 hat i. Coordinates of the particle at time t= pi//(B_0 alpha) are

    A
    `(v_0 / (2B_0 alpha) ,(sqrt 2v_0)/(alpha B_0), (-v_0)/ (B_0 alpha) )`
    B
    `(v_0 / (2B_0 alpha) ,0, 0 )`
    C
    `(0 ,(2v_0)/(B_0 alpha), (v_0 pi)/ (2 B_0 alpha) )`
    D
    `((v_0 pi)/ (B_0 alpha) ,0,(-2v_0)/(B_0 alpha) )`
  • Similar Questions

    Explore conceptually related problems

    If vec A =4 hat I + 6 hat j -3 hat k and vec B =- 2 hat I -5 hat j + 7 hat k , find the angle between vec A and vec B .

    A charge q=-4 mu C has an instantaneous velocity vec v = (2 hat i - 3 hat j + hat k)xx10^6 ms^-1 in a uniform magnetic field vec B = (2 hat i + 5 hat j - 3hat k)xx10^-2 T. What is the force on the charge?

    A charge particles q enters in a magnetic field vec(B)=y hat(i) + x hat (j) with the velocity vec(v)= x hat (i) y hat (j) . Neglect any force other than magnetic force. Now answer the following question. Magnetic force F acting on charge is proportional to –

    If vec a=hat i-hat j and vec b=-hat j+2hat k, find (vec a-2vec b)*(vec a+vec b)

    If vec A = hat i + 3 hat j + 2 hat K and vec B = 3 hat i + hat j + 2 hat k , then find the vector product vec A xx vec B .