Home
Class 12
PHYSICS
The average value of current i=I(m) sin ...

The average value of current `i=I_(m) sin omega t from t=(pi)/(2 omega )` to `t=(3 pi)/(2 omega)` si how many times of `(I_m)`?

Text Solution

Verified by Experts

The correct Answer is:
0

`gt i lt =(int_(pi//2 omega)^(3pi//2omega) I_(m) sin omega t dt)/((3 pi)/(2omega)-(pi)/(2 omega)) = (I_(m)(-(cos omegat)/(omega))_(pi//2omega)^(3 pi//2omega))/((pi)/(omega))=0`.
Promotional Banner

Topper's Solved these Questions

  • ALTERNATING CURRENT

    CENGAGE PHYSICS|Exercise Archives Subjective|1 Videos
  • ALTERNATING CURRENT

    CENGAGE PHYSICS|Exercise Archives Single Correct|2 Videos
  • ALTERNATING CURRENT

    CENGAGE PHYSICS|Exercise Exercises Linked Comprehension|25 Videos
  • OSCILLATIONS

    CENGAGE PHYSICS|Exercise QUESTION BANK|39 Videos
  • ATOMIC PHYSICS

    CENGAGE PHYSICS|Exercise ddp.4.3|15 Videos

Similar Questions

Explore conceptually related problems

Find the rms value of current i=I_(m)sin omegat from (i) t=0 "to" t=(pi)/(omega) (ii) t=(pi)/(2omega) "to" t=(3pi)/(2omega)

r.m.s. value of current i=3+4 sin (omega t+pi//3) is:

The average value of alternating current I=I_(0) sin omegat in time interval [0, pi/omega] is

The average value of a.c. voltge E =E_(0) sin omega t over the time interval t = 0 to t = pi//omega is

The r.m.s. value of I = I_(1) sin omega t + I_(2) cos omega t is

The r.m.s. value of I = I_(1) sin omega t + I_(2) cos omega t is

What is the average value of atlernating current, I = I_(0) sin omega t over time interval t = pi//omega to t = pi//omega ?

Find the average value I_(m) of alternating current intensity over time interval from 0 to (pi)/(omega)

If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is