Home
Class 12
MATHS
Let bar a= hat i+ hat j+ hat k ,""b=...

Let ` bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k` and ` bar c=x hat i+(x-2) hat j- hat k` . If the vector c lies in the plane of a and b , then x equals (1) 0 (2) 1 (3) `-4` (4) `-2`

Text Solution

Verified by Experts

`a,b,c` are in simple plane
`[abc]=0`
`[[x,x-2,-1],[1,1,1],[1,-1,2]]=0`
`x(2+1)-(x-2)1+(-1)(-2)=0`
`3x-x+2+2=0`
`2x+4=0`
`x=-2`
option`4=(-2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|16 Videos

Similar Questions

Explore conceptually related problems

Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i- hat j- hat k be three vectors. A vector vec v in the plane of vec aa n d vec b , whose projection on vec c is 1/(sqrt(3)) is given by a. hat i-3 hat j+3 hat k b. -3 hat i-3 hat j+3 hat k c. 3 hat i- hat j+3 hat k d. hat i+3 hat j-3 hat k

If bar(a)=3hat i-3hat j-4hat k, bar(b)=hat i+2hat j+hat k and bar(c)=3hat i-hat j-2hat k , then [bar(a) bar(b) bar(c)] =

Knowledge Check

  • Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

    A
    0
    B
    1
    C
    `-4`
    D
    `-2`
  • Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

    A
    0
    B
    1
    C
    `-4`
    D
    `-2`
  • Let a=hat(i)+hat(j)+hat(k), b=hat(i)-hat(j)+hat(k) and c=hat(i)-hat(j)-hat(k) be three vectors. A vector v in the plane of a and b whose projection on c is 1/sqrt(3) , is given by

    A
    `3 hat(i)+hat(j)-3hat(k)`
    B
    `3hat(i)-hat(j)+3hat(k)`
    C
    `3hat(i)+hat(j)+3hat(k)`
    D
    `-3hat(i)+hat(j)+3hat(k)`
  • Similar Questions

    Explore conceptually related problems

    Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k

    Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot A vector in the plane of vec a and vec b whose projection of c is 1//sqrt(3) is a. 4 hat i- hat j+4 hat k b. 3 hat i+ hat j+3 hat k c. 2 hat i+ hat j+2 hat k d. 4 hat i+ hat j-4 hat k

    vec a=hat i+hat j+hat k,vec b=2hat i-hat j+3hat k and vec c=hat i-2hat j+hat k find a unit vector in a direction parallel to vector (2vec a-vec b+3vec c)

    Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i-3 hat k) are collinear.

    Let a=2hat(i)-hat(j)+hat(k), b=hat(i)+2hat(j)-hat(k) and c=hat(i)+hat(j)-2hat(k) be three vectors, A vector in the plane of b and c whose projection on a is of magnitude sqrt(2/3) , is