Home
Class 12
MATHS
Let f(x)=f(1)(x)-2f(2)(x), where f(1)(...

Let `f(x)=f_(1)(x)-2f_(2)(x),` where
`f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):}`
`"and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):}`
`"and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):}`
For `x in(-1,00),f(x)+g(x) `is

A

`x^(2)-2x+1`

B

`x^(2)+2x-1`

C

`x^(2)+2x+1`

D

`x^(2)-2x-1`

Text Solution

Verified by Experts

The correct Answer is:
b
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|24 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=f_1(x)-2f_2 (x), where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

Knowledge Check

  • Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} The graph of y=g(x) in its domain is broken at

    A
    1 point
    B
    2 points
    C
    3 points
    D
    None of these
  • Let f(x)=f_(1)(x)-2f_(2)(x), where where f(x)={(min{x^(2)","|x|}",",|x| le 1),(max{x^(2)","|x|}",",|x| gt 1):} and f_(2)(x)={(min{x^(2)","|x|}",",|x| gt 1),(max{x^(2)","|x|}",",|x| le 1):} and let g(x)={(min{f(t):-3 le t le x", "-3 le x lt 0}),(max{f(t): 0le t le x", " 0 le x le 3}):} For x in (-1,0), f(x)+g(x) is

    A
    `x^(2)-2x+1`
    B
    `x^(2)+2x-1`
    C
    `x^(2)+2x+1`
    D
    `x^(2)-2x-1`
  • f(x)=min({x,x^(2)} and g(x)=max{x,x^(2)}

    A
    `int_(-1)^(1)f(x)=-(1)/(6)`
    B
    `int_(-2)^(1)g(x)=(19)/(6)`
    C
    `int_(-1)^(1)f(x)=(19)/(6)`
    D
    `int_(-1)^(1)g(x)=-(1)/(6)`
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=max.{|x^(^^)2-2|x||,|x|} and g(x)=min.{|x^(^^)2-2|x||,|x|} then

    Let f(x)={{:(,3^x,at,-1lt x lt0),(,4,at,0 le x lt 1),(,3x-1, at,1 le x le 3):} Find f(2), f(0), f(0.5), f(-0.5), f(3).

    Let f(x)={:{(max{t^(3)-t^(2)+t+1,0letlex}",",0lexle1),(min{3-t,1lttlex}",",1ltxle2):} The function f(x),AAx in [0,2] is

    The function f(x)={{:(x^(4)+x^(2)-x+2",",,"for "x le1),(3x^(3)-x^(2)+x",",,"for "x gt1):} is

    Let f(x) ={{:(min{x,x^(2)},x le 0), (max {2x","x^(2)-1},xlt0):} then which of the following is not true ?