Home
Class 12
PHYSICS
The maximum values of sinx(1+cosx) will ...

The maximum values of `sinx(1+cosx)` will be at the

A

`x=(pi)/(2)`

B

`x=(pi)/(6)`

C

`x=(pi)/(3)`

D

`x=pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( y = \sin x (1 + \cos x) \), we will follow these steps: ### Step 1: Define the function Let \( y = \sin x (1 + \cos x) \). ### Step 2: Differentiate the function To find the maximum value, we need to differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} (\sin x (1 + \cos x)) \] Using the product rule: \[ \frac{dy}{dx} = \cos x (1 + \cos x) + \sin x (-\sin x) \] This simplifies to: \[ \frac{dy}{dx} = \cos x (1 + \cos x) - \sin^2 x \] ### Step 3: Set the derivative to zero To find critical points, set \( \frac{dy}{dx} = 0 \): \[ \cos x (1 + \cos x) - \sin^2 x = 0 \] Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can rewrite the equation: \[ \cos x (1 + \cos x) - (1 - \cos^2 x) = 0 \] This simplifies to: \[ \cos x + \cos^2 x - 1 + \cos^2 x = 0 \] \[ 2\cos^2 x + \cos x - 1 = 0 \] ### Step 4: Solve the quadratic equation Let \( u = \cos x \). The equation becomes: \[ 2u^2 + u - 1 = 0 \] Using the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ u = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm 3}{4} \] This gives: \[ u = \frac{2}{4} = \frac{1}{2} \quad \text{or} \quad u = \frac{-4}{4} = -1 \] ### Step 5: Find the corresponding values of \( x \) 1. For \( \cos x = \frac{1}{2} \): \[ x = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad x = \frac{5\pi}{3} + 2n\pi \quad (n \in \mathbb{Z}) \] 2. For \( \cos x = -1 \): \[ x = \pi + 2n\pi \quad (n \in \mathbb{Z}) \] ### Step 6: Determine maximum or minimum To determine whether these points are maxima or minima, we can use the second derivative test. We find \( \frac{d^2y}{dx^2} \) and evaluate it at \( x = \frac{\pi}{3} \). ### Step 7: Calculate the second derivative Using the first derivative: \[ \frac{dy}{dx} = \cos x (1 + \cos x) - \sin^2 x \] Differentiate again: \[ \frac{d^2y}{dx^2} = -\sin x (1 + \cos x) - 2\cos x \sin x \] At \( x = \frac{\pi}{3} \): \[ \frac{d^2y}{dx^2} = -\sin\left(\frac{\pi}{3}\right)(1 + \cos\left(\frac{\pi}{3}\right)) - 2\cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right) \] Calculating this gives a negative value, confirming that \( x = \frac{\pi}{3} \) is a maximum. ### Conclusion The maximum value of \( \sin x (1 + \cos x) \) occurs at \( x = \frac{\pi}{3} \). ---

To find the maximum value of the function \( y = \sin x (1 + \cos x) \), we will follow these steps: ### Step 1: Define the function Let \( y = \sin x (1 + \cos x) \). ### Step 2: Differentiate the function To find the maximum value, we need to differentiate \( y \) with respect to \( x \): \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=sinx(1+cosx) is

What is the maximum value of sinx+cosx

Show that The maximum value of sinx. cosx in R is 1/2

Maximum value of f(x)=sinx+cosx is :

The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

Maximum value of cosx (sinx +cos x) is equal to :

The maximum value of exp(2+sqrt3cosx+sinx) is

The maximum value of function f(x)=sinx(1+cosx),xiniR is

(x+sinx)/(1-cosx)

The maximum value of (3cosx+4sinx) (3sinx-4cosx) for every x in R is